Re: ContourPlot3D Problem
- To: mathgroup at smc.vnet.net
- Subject: [mg75241] Re: ContourPlot3D Problem
- From: Roger Bagula <rlbagula at sbcglobal.net>
- Date: Sat, 21 Apr 2007 23:14:53 -0400 (EDT)
- References: <f079vc$4a0$1@smc.vnet.net>
dennis wrote: >I am trying to plot a cone with a spherical cap. The code I am using >is shown below. > >=CE=B8 = 10.*Degree; >sMax = 10; >a = {1., 1., 1}/Sqrt[3.]; >{x0, y0, z0} = sMax*(1 + Tan[=CE=B8]^2)*a; >rCirc = sMax*(Tan[=CE=B8]/Cos[=CE=B8]); >g1 = ContourPlot3D[ >If[{x, y, z} . a <= sMax, {x, y, z} . a - > Sqrt[x^2 + y^2 + z^2]*Cos[=CE=B8], (x - x0)^2 + (y - y0)^2 + (z - >z0)^2 - > rCirc^2], {x, 0, 10}, {y, 0, 10}, {z, 0, 10}, PlotPoints -> {8, >6}, > ViewPoint -> {2.651, -2.103, -0.026}, PlotRange -> > {{0, 12}, {0, 12}, {0, 10}}]; > >This produces the cone with a spherical cap, but it also produces a >plane perpendicular to the cone axis at the junction of the cone and >sphere. How can I get the cone-sphere without the plane? > >Thanks, >Dennis > > > > Your code doesn't work here either. Try plotting it as g1 and g2: g1-> cone {x, y, z} . a - Sqrt[x^2 + y^2 + z^2]*Cos[ang] g2->sphere (x - x0)^2 + (y - y0)^2 + (z - z0)^2 - rCirc^2 Show[{g1,g2}] Doing this isolates the plane to the cut off cone section. You have to specify that: Sqrt[x^2 + y^2 + z^2]*Cos[ang]<>10 My code works worse than yours but elementates the plane ((0.5773502691896258` x + 0.5773502691896258` y + 0.5773502691896258` z-10==0) \!\(\* StyleBox[\(g1\ = \ ContourPlot3D[If[0.5773502691896258`\ x + 0.5773502691896258`\ y + 0.5773502691896258`\ z > 10, \n103.10912041257637`\ \[InvisibleSpace] - 11.906015685221298`\ x + x\^2 - 11.906015685221298`\ y + y\^2 - 11.906015685221298`\ z + z\^2, 0], \ {x, \ 0, \ 10}, \ {y, \ 0, \ 10}, \ {z, \ 0, \ 10}, \ \ PlotPoints\ -> \ {8, \n6}, \n\ \ \ \ ViewPoint\ -> \ { 2.651, \ \(-2.103\), \ \(-0.026\)}, \ PlotRange\ -> \n\ \ \ \ \ \ {{0, \ 12}, \ {0, \ 12}, \ {0, \ 10}}]\), FontFamily->"Lucida Grande", FontSize->13]\) \!\(\* StyleBox[\(g2\ = \ ContourPlot3D[If[\(( 0.5773502691896258`\ x + 0.5773502691896258`\ y + 0.5773502691896258`\ z > 10)\) && \((0.984807753012208`\ \@\ \(\(x\^2\)\(+\)\(y\^2\)\(+\)\(z\^2\)\(\ \ \ \ \ \ \ \ \)\))\) <> 10, \n0, \ 0.5773502691896258`\ x + 0.5773502691896258`\ y + 0.5773502691896258`\ z - \ 0.984807753012208`\ \@\(x\^2 + y\^2 + z\^2\)], \ {x, \ 0, \ 10}, \ {y, \ 0, \ \ 10}, \ {z, \ 0, \ 10}, \ PlotPoints\ -> \ {8, \n6}, \n\ \ \ \ ViewPoint\ -> \ \ {2.651, \ \(-2.103\), \ \(-0.026\)}, \ PlotRange\ -> \n\ \ \ \ \ {{0, \ \ 12}, \ {0, \ 12}, \ {0, \ 10}}]\), FontFamily->"Lucida Grande", FontSize->13]\) Show[{g1, g2}] The plane shows up when: 0.984807753012208*Sqrt[x^2+y^2+z^2]==0