Integration of rational functions (reprise!)
- To: mathgroup at smc.vnet.net
- Subject: [mg75226] Integration of rational functions (reprise!)
- From: dimitris <dimmechan at yahoo.com>
- Date: Sat, 21 Apr 2007 23:07:10 -0400 (EDT)
Although Integrate has become undoubtfully (even) more powerful in versions 5.X, I think there are still some things of special attention. Integration of rational functions is one such issue. In particular during cases that the RootSum function is generated, strange behavior can often be encountered. Although many threads were based on it (i.e. RootSum) I still find intresting to point out some of my findings. For example In[115]:= g[x_] := (2*x)/((x + 1)*(x^3 + 3*x^2 + 2*x + 1)) The definite integral stays unevaluated In[116]:= Timing[Integrate[g[x], {x, 0, Infinity}]] Out[116]= {142.078*Second, Integrate[(2*x)/((1 + x)*(1 + 2*x + 3*x^2 + x^3)), {x, 0, Infinity}]} even though an antiderivative continuous in the integration range can be obtained by Integrate In[117]:= G[x_] = Integrate[g[x], x] Out[117]= 2*(-Log[1 + x] + RootSum[1 + 2*#1 + 3*#1^2 + #1^3 & , (Log[x - #1] + 2*Log[x - #1]*#1 + Log[x - #1]*#1^2)/ (2 + 6*#1 + 3*#1^2) & ]) In[118]:= Timing[(Limit[G[x], x -> #1] & ) /@ {0, Infinity}] Out[118]= {191.422*Second, {2*RootSum[1 + 2*#1 + 3*#1^2 + #1^3 & , (Log[-#1] + 2*Log[-#1]*#1 + Log[-#1]*#1^2)/(2 + 6*#1 + 3*#1^2) & ], 0}} In[119]:= (Plus[#2 - #1] & ) @@ %[[2]] N[%] Out[119]= -2*RootSum[1 + 2*#1 + 3*#1^2 + #1^3 & , (Log[-#1] + 2*Log[-#1]*#1 + Log[-#1]*#1^2)/(2 + 6*#1 + 3*#1^2) & ] Out[120]= 0.37121697526024766 + 0.*I In[121]:= (Plus[#2 - #1] & ) @@ %[[2]] N[%] Out[121]= -2*RootSum[1 + 2*#1 + 3*#1^2 + #1^3 & , (Log[-#1] + 2*Log[-#1]*#1 + Log[-#1]*#1^2)/(2 + 6*#1 + 3*#1^2) & ] Out[122]= 0.37121697526024766 + 0.*I In[122]:= NIntegrate[g[x], {x, 0, Infinity}] Out[122]= 0.3712169752602472 A somehow "opposite" behavior is also possible E g In[15]:= f2[x_] := (2*x - 5)/(x^3 + 2*x^2 + 11*x + 6) In[19]:= F2[x_] = Integrate[f2[x], x] Out[19]= RootSum[6 + 11*#1 + 2*#1^2 + #1^3 & , (-5*Log[x - #1] + 2*Log[x - #1]*#1)/(11 + 4*#1 + 3*#1^2) & ] The definite integral can be evaluated In[44]:= Timing[Integrate[f2[x], {x, 0, Infinity}]] Out[44]= {43.687*Second, (1/3628)*(2*Log[-Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 3]]*(1556 + 771*Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 3] + (189 - 6*Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 1]*Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 2])* Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 3]^2 + (33 - 9*Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 1]* Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 2])*Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 3]^3) + Log[-Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 1]]*(313 + 462*Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 3] - 33*(-5 + 2*Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 1])*Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 3]^2 - 3*(-5 + 2*Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 1])*Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 2]^2* (11 + 4*Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 3] + 3*Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 3]^2) + 6*Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 2]*(77 + 28*Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 3] + (10 - 4*Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 1])*Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 3]^2)) + Log[-Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 2]]*(-3605 + 42*Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 1]* Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 3]*(4 + 3*Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 3]) + 9*Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 1]^2*Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 3]* (14 + 5*Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 3]) - 6*Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 2]* (77 + 3*Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 1]^2*Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 3]^2) + 3*Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 2]^2*(-55 + 22*Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 3] + Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 1]*(22 + 8*Root[6 + 11*#1 + 2*#1^2 + #1^3 & , 3]))))} However application of the Newton-Leibniz formula fails! In[21]:= Limit[F2[x], x -> Infinity] - Limit[F2[x], x -> 0] Out[21]= Limit[RootSum[6 + 11*#1 + 2*#1^2 + #1^3 & , (-5*Log[x - #1] + 2*Log[x - #1]*#1)/(11 + 4*#1 + 3*#1^2) & ], x -> Infinity] - RootSum[6 + 11*#1 + 2*#1^2 + #1^3 & , (-5*Log[-#1] + 2*Log[-#1]*#1)/(11 + 4*#1 + 3*#1^2) & ]