Re: writting an expression
- To: mathgroup at smc.vnet.net
- Subject: [mg75320] Re: [mg75291] writting an expression
- From: Daniel Lichtblau <danl at wolfram.com>
- Date: Wed, 25 Apr 2007 05:34:01 -0400 (EDT)
- References: <200704240722.DAA27356@smc.vnet.net>
dimitris wrote: > Hello. > > I have the expression > > In[193]:= > ee = 1/(1 + o^4); > > and I want to write in the form > > Out[194]= > (-Sqrt[2] + o)/(2*Sqrt[2]*(-1 + Sqrt[2]*o - o^2)) + (Sqrt[2] + o)/ > (2*Sqrt[2]*(1 + Sqrt[2]*o + o^2)) > > Currently I can think something like > > In[237]:= > 1 + o^4 == (a + b*o + o^2)*(c + d*o + o^2) + O[o]^5 > LogicalExpand[%] > ({ToRules[#1]} & )[(Reduce[#1, {a, b, c, d}] & )[Reduce[% && a < b, > Reals]]] > Apart[1/((a + b*o + o^2)*(c + d*o + o^2) /. %[[1]])] > > Out[237]= > 1 + o^4 == SeriesData[o, 0, {a*c, b*c + a*d, a + c + b*d, b + d, 1}, > 0, 5, 1] > > Out[238]= > -1 + a*c == 0 && b + d == 0 && b*c + a*d == 0 && a + c + b*d == 0 > > Out[239]= > {{a -> 1, b -> Sqrt[2], c -> 1, d -> -Sqrt[2]}} > > Out[240]= > (-Sqrt[2] + o)/(2*Sqrt[2]*(-1 + Sqrt[2]*o - o^2)) + (Sqrt[2] + o)/ > (2*Sqrt[2]*(1 + Sqrt[2]*o + o^2)) > > Any other ideas? > > Thanks. > Dimitris > Factor denominator over Q[Sqrt[2]], then do Apart of 1/result. In[42]:= InputForm[Apart[1/Factor[1+o^4,Extension->Sqrt[2]],o]] Out[42]//InputForm= (-Sqrt[2] + o)/(2*Sqrt[2]*(-1 + Sqrt[2]*o - o^2)) + (Sqrt[2] + o)/(2*Sqrt[2]*(1 + Sqrt[2]*o + o^2)) Daniel Lichtblau Wolfram Research
- References:
- writting an expression
- From: dimitris <dimmechan@yahoo.com>
- writting an expression