Re: Inverse Tangent function
- To: mathgroup at smc.vnet.net
- Subject: [mg80023] Re: [mg79970] Inverse Tangent function
- From: Andrzej Kozlowski <akoz at mimuw.edu.pl>
- Date: Fri, 10 Aug 2007 06:46:19 -0400 (EDT)
- References: <200708100538.BAA10433@smc.vnet.net>
On 10 Aug 2007, at 07:38, Boen S. Liong wrote: > Please help: > > Let w1 = tan-1(x) i.e. inverse tangent of x or tan(w1) = x > > w2 = tan-1(y) i.e. tan(y) = w2 > > and w3 = w2- w1 > > problem: find tan(w3) in term of x and y. > > or better yet: > > let x= x1/z1 > > and y= y1/z1 > > problem:find tan(w3) in term of x and y. > > I know the formula for tan( u+v) or tan(u-v). but please help for the > above. thank you. > > Boen S. Liong > > TrigExpand[Tan[ArcTan[x] - ArcTan[y]]] x/(Sqrt[x^2 + 1]*Sqrt[y^2 + 1]*((x*y)/(Sqrt[x^2 + 1]*Sqrt[y^2 + 1]) + 1/(Sqrt[x^2 + 1]*Sqrt[y^2 + 1]))) - y/(Sqrt[x^2 + 1]*Sqrt[y^2 + 1]*((x*y)/(Sqrt[x^2 + 1]*Sqrt[y^2 + 1]) + 1/(Sqrt[x^2 + 1]*Sqrt[y^2 + 1]))) P.S. I don't see the point of the "or better yet" part of your question. Andrzej Kozlowski
- References:
- Inverse Tangent function
- From: "Boen S. Liong" <mr_bean_curdy@yahoo.com>
- Inverse Tangent function