Re: Foucault pendulum
- To: mathgroup at smc.vnet.net
- Subject: [mg80226] Re: Foucault pendulum
- From: dimitris <dimmechan at yahoo.com>
- Date: Wed, 15 Aug 2007 04:16:46 -0400 (EDT)
- References: <f9mq8f$r63$1@smc.vnet.net><f9p4db$qdh$1@smc.vnet.net>
On 14 , 13:50, Jens-Peer Kuska <ku... at informatik.uni-leipzig.de> wrote: > Hi, > > sorry the last version has a bug > here is a nicer version > > pendelPos[{x_, y_}] := {x, y, -Sqrt[10 - x^2 - y^2]} > > pendel[tau_?NumericQ, > sol_] := ({AbsoluteThickness[3], > Line[{{0, 0, 0}, pendelPos[{x[t], y[t]}]}], > Sphere[pendelPos[{x[t], y[t]}], 0.15]} /. sol[[1]]) /. t -> tau > > Manipulate[ > DynamicModule[{traj, sol, fed, fulltraj}, > fde = > {x''[t] == -\[Omega]^2*x[t] + > 2 \[CapitalOmega]*Sin[\[Phi]]*y'[t] , > y''[t] == -\[Omega]^2*y[t] - > 2 \[CapitalOmega]*Sin[\[Phi]]*x'[t]}; > sol = NDSolve[ > Join[fde, {x[0] == 2, y[0] == 2, x'[0] == 0, y'[0] == 0}], > {x[t], y[t]}, {t, 0, 64 Pi}, MaxSteps -> Infinity]; > fulltraj = ParametricPlot3D[ > {x[t], y[t], -4} /. sol[[1]], {t, 0, 64 Pi}, > PlotPoints -> 1024 > ]; > traj = ParametricPlot3D[ > pendelPos[{x[t], y[t]} /. sol[[1]]], {t, t1, t1 + 4 Pi}, > PlotStyle -> RGBColor[1, 0, 0] > ]; > Graphics3D[ > {traj[[1]], fulltraj[[1]], pendel[t1, sol]}, > PlotRange -> {{-2.5, 2.5}, {-2.5, 2.5}, {-4, 0}} > ]], {{\[Omega], 1, "Pendel Frequence"}, 0.1, > 10}, {{\[CapitalOmega], 1/16, "Earth Circum Frequence"}, 0, > 1/2}, {{\[Phi], Pi/3, "Latitude"}, 0, Pi/2}, {{t1, 0, "time"}, 0, > 60 Pi} > ] > > Regards > Jens > > > > dimitris wrote: > > On 12 , 14:17, dimitris <dimmec... at yahoo.com> wrote: > >> Hello. > >> Does anyone have notebooks > >> demonstrating Foucault's pendulum? > > >> Thanks > >> Dimitris > > > I mean the motion of a Foucalt's pendulum of course. > > > Dimitris- - > > - - Some time ago I download from wolfram.com a notebook that implemented Manipulate in eralier versions. I have not used it yet, but what I really need was a code like this you sent me. I think I can make the animations in 5.2! Regards Dimitris I can