Re: Foucault pendulum
- To: mathgroup at smc.vnet.net
- Subject: [mg80226] Re: Foucault pendulum
- From: dimitris <dimmechan at yahoo.com>
- Date: Wed, 15 Aug 2007 04:16:46 -0400 (EDT)
- References: <f9mq8f$r63$1@smc.vnet.net><f9p4db$qdh$1@smc.vnet.net>
On 14 , 13:50, Jens-Peer Kuska <ku... at informatik.uni-leipzig.de>
wrote:
> Hi,
>
> sorry the last version has a bug
> here is a nicer version
>
> pendelPos[{x_, y_}] := {x, y, -Sqrt[10 - x^2 - y^2]}
>
> pendel[tau_?NumericQ,
> sol_] := ({AbsoluteThickness[3],
> Line[{{0, 0, 0}, pendelPos[{x[t], y[t]}]}],
> Sphere[pendelPos[{x[t], y[t]}], 0.15]} /. sol[[1]]) /. t -> tau
>
> Manipulate[
> DynamicModule[{traj, sol, fed, fulltraj},
> fde =
> {x''[t] == -\[Omega]^2*x[t] +
> 2 \[CapitalOmega]*Sin[\[Phi]]*y'[t] ,
> y''[t] == -\[Omega]^2*y[t] -
> 2 \[CapitalOmega]*Sin[\[Phi]]*x'[t]};
> sol = NDSolve[
> Join[fde, {x[0] == 2, y[0] == 2, x'[0] == 0, y'[0] == 0}],
> {x[t], y[t]}, {t, 0, 64 Pi}, MaxSteps -> Infinity];
> fulltraj = ParametricPlot3D[
> {x[t], y[t], -4} /. sol[[1]], {t, 0, 64 Pi},
> PlotPoints -> 1024
> ];
> traj = ParametricPlot3D[
> pendelPos[{x[t], y[t]} /. sol[[1]]], {t, t1, t1 + 4 Pi},
> PlotStyle -> RGBColor[1, 0, 0]
> ];
> Graphics3D[
> {traj[[1]], fulltraj[[1]], pendel[t1, sol]},
> PlotRange -> {{-2.5, 2.5}, {-2.5, 2.5}, {-4, 0}}
> ]], {{\[Omega], 1, "Pendel Frequence"}, 0.1,
> 10}, {{\[CapitalOmega], 1/16, "Earth Circum Frequence"}, 0,
> 1/2}, {{\[Phi], Pi/3, "Latitude"}, 0, Pi/2}, {{t1, 0, "time"}, 0,
> 60 Pi}
> ]
>
> Regards
> Jens
>
>
>
> dimitris wrote:
> > On 12 , 14:17, dimitris <dimmec... at yahoo.com> wrote:
> >> Hello.
> >> Does anyone have notebooks
> >> demonstrating Foucault's pendulum?
>
> >> Thanks
> >> Dimitris
>
> > I mean the motion of a Foucalt's pendulum of course.
>
> > Dimitris- -
>
> - -
Some time ago I download from wolfram.com
a notebook that implemented Manipulate in
eralier versions. I have not used it yet, but
what I really need was a code like this
you sent me. I think I can make the animations
in 5.2!
Regards
Dimitris
I can