       Re: Foucault pendulum

• To: mathgroup at smc.vnet.net
• Subject: [mg80226] Re: Foucault pendulum
• From: dimitris <dimmechan at yahoo.com>
• Date: Wed, 15 Aug 2007 04:16:46 -0400 (EDT)
• References: <f9mq8f\$r63\$1@smc.vnet.net><f9p4db\$qdh\$1@smc.vnet.net>

```On 14    , 13:50, Jens-Peer Kuska <ku... at informatik.uni-leipzig.de>
wrote:
> Hi,
>
> sorry the last version has a bug
> here is a nicer version
>
> pendelPos[{x_, y_}] := {x, y, -Sqrt[10 - x^2 - y^2]}
>
> pendel[tau_?NumericQ,
>    sol_] := ({AbsoluteThickness,
>       Line[{{0, 0, 0}, pendelPos[{x[t], y[t]}]}],
>       Sphere[pendelPos[{x[t], y[t]}], 0.15]} /. sol[]) /. t -> tau
>
> Manipulate[
>   DynamicModule[{traj, sol, fed, fulltraj},
>    fde =
>     {x''[t] == -\[Omega]^2*x[t] +
>        2 \[CapitalOmega]*Sin[\[Phi]]*y'[t] ,
>      y''[t] == -\[Omega]^2*y[t] -
>        2 \[CapitalOmega]*Sin[\[Phi]]*x'[t]};
>    sol = NDSolve[
>      Join[fde, {x == 2, y == 2, x' == 0, y' == 0}],
>      {x[t], y[t]}, {t, 0, 64 Pi}, MaxSteps -> Infinity];
>    fulltraj = ParametricPlot3D[
>      {x[t], y[t], -4} /. sol[], {t, 0, 64 Pi},
>      PlotPoints -> 1024
>      ];
>    traj = ParametricPlot3D[
>      pendelPos[{x[t], y[t]} /. sol[]], {t, t1, t1 + 4 Pi},
>      PlotStyle -> RGBColor[1, 0, 0]
>      ];
>    Graphics3D[
>     {traj[], fulltraj[], pendel[t1, sol]},
>     PlotRange -> {{-2.5, 2.5}, {-2.5, 2.5}, {-4, 0}}
>     ]], {{\[Omega], 1, "Pendel Frequence"}, 0.1,
>    10}, {{\[CapitalOmega], 1/16, "Earth Circum Frequence"}, 0,
>    1/2}, {{\[Phi], Pi/3, "Latitude"}, 0, Pi/2}, {{t1, 0, "time"}, 0,
>    60 Pi}
>   ]
>
> Regards
>    Jens
>
>
>
> dimitris wrote:
> > On 12    , 14:17, dimitris <dimmec... at yahoo.com> wrote:
> >> Hello.
> >> Does anyone have notebooks
> >> demonstrating Foucault's pendulum?
>
> >> Thanks
> >> Dimitris
>
> > I mean the motion of a Foucalt's pendulum of course.
>
> > Dimitris-                               -
>
> -                               -

a notebook that implemented Manipulate in
eralier versions. I have not used it yet, but
what I really need was a code like this
you sent me. I think I can make the animations
in 5.2!

Regards
Dimitris
I can

```

• Prev by Date: Re: Re: Version 6 "Mathematica Book" - updated
• Next by Date: Re: Complexity explosion in linear solve
• Previous by thread: Re: Foucault pendulum
• Next by thread: RandomComplex documentation