generalized 2d IFS for D_n Cartan group using MathWorld DihedralGroupMatrices
- To: mathgroup at smc.vnet.net
- Subject: [mg80313] generalized 2d IFS for D_n Cartan group using MathWorld DihedralGroupMatrices
- From: Roger Bagula <rlbagula at sbcglobal.net>
- Date: Fri, 17 Aug 2007 01:51:13 -0400 (EDT)
This affine IFS uses the DihedralGroupMatrices[] to set up a general IFS with Moran similarity dimension 2 based on D_n Cartan groups( same as SO(2*n) special orthogonal groups): n0 is the group level. These just get two complex too fast after n0=3! Too much overlap results. Clear[f, dlst, pt, cr, ptlst, M, r, p, rotate] n0 = 3; dlst = Table[ Random[Integer, {1, 2*n0}], {n, 25000}]; << MathWorld`Groups` M = DihedralGroupMatrices[n0]; Table[Det[M[[n]]], {n, 1, 2*n0}] in = N[Table[{M[[n]][[1, 1]], M[[n]][[1, 2]]}, {n, 1, 2*n0}]] f[j_, {x_, y_}] := M[[j]]. {x, y}/Sqrt[2*n0] + in[[j]] pt = {0.5, 0.5}; cr[n_] := Flatten[Table[If[i == j == k == 1, {}, RGBColor[i, j, k]], {i, 0, 1}, {j, 0, 1}, {k, 0, 1}]][[1 + Mod[n, 7]]]; ptlst[n_] := Table[{cr[dlst[[j]]], Point[pt = f[dlst[[j]], Sequence[pt]]]}, {j, Length[dlst]}]; Show[Graphics[Join[{PointSize[.001]}, ptlst[ n]]], AspectRatio -> Automatic, PlotRange -> All]
- Follow-Ups:
- Re: generalized 2d IFS for D_n Cartan group using MathWorld
- From: Murray Eisenberg <murray@math.umass.edu>
- Re: generalized 2d IFS for D_n Cartan group using MathWorld