Re: Similar matrices->similar eigenvectors?
- To: mathgroup at smc.vnet.net
- Subject: [mg80401] Re: [mg80371] Similar matrices->similar eigenvectors?
- From: DrMajorBob <drmajorbob at bigfoot.com>
- Date: Tue, 21 Aug 2007 05:06:18 -0400 (EDT)
- References: <14594541.1187598542998.JavaMail.root@m35>
- Reply-to: drmajorbob at bigfoot.com
I don't think it's possible to eliminate all discontinuities, but this may improve things: Clear[normalize, eigensystem] normalize[v : {(0.) ..., x_?Negative, ___}] := -v/Norm[v] normalize[v_?VectorQ] := v/Norm[v] normalize[m_?MatrixQ] := normalize /@ m eigensystem[m_?MatrixQ] := Module[{e, vecs, vals, o}, {vals, vecs} = Eigensystem[m]; vecs = normalize@vecs; o = Reverse@Ordering@vals; {vals[[o]], vecs[[o]]} ] eigensystem[m_?MatrixQ, k_Integer?Positive] := eigensystem[m][[All, ;; k]] distances2points[d_] := (n = Length[d]; h = IdentityMatrix[n] - Table[1, {n, n}]/n; b = -h.(d*d/2).h; {vals, vecs} = eigensystem[b, 2]; Point[Re[#]] & /@ Transpose[vecs*Sqrt[vals]]) Clear[d1, d2, d3, d4, d5, d6]; limits = {{{d1, 0, "1->2"}, 0, 1}, {{d2, 0, "1->3"}, 0, 1}, {{d3, 0, "1->4"}, 0, 1}, {{d4, 0, "2->3"}, 0, 1}, {{d5, 0, "2->4"}, 0, 1}, {{d6, 0, "3->4"}, 0, 1}}; Manipulate[ Graphics[distances2points[{{0, d1, d2, d3}, {d1, 0, d4, d5}, {d2, d4, 0, d6}, {d3, d5, d6, 0}}], PlotRange -> {{-1, 1}, {-1, 1}}], Evaluate[Sequence @@ limits], LocalizeVariables -> False] Replace eigensystem with Eigensystem in "distances2points", to get the original behavior. Bobby On Mon, 20 Aug 2007 02:38:50 -0500, Yaroslav Bulatov <yaroslavvb at gmail.com> wrote: > In the default implementation of "Eigenvectors", the orientations seem > arbitrary. Changing the matrix slightly could end up flipping the > eigenvectors 180 degrees. A simple fix of telling eigenvectors to > always be on one side of some arbitrary plane doesn't work because it > will flip eigenvectors that are near-parallel to the plane with small > changes in the matrix. > > I'm trying to make a demo of multi-dimensional scaling, and the result > is that as I drag the slider, the points flip back and forth > erratically. > > Basically I'd like to get a function g[mat] which returns eigenvectors > of mat, and is continuous, what is the simplest way of achieving this? > > ----------- > distances2points[d_] := (n = Length[d]; > (*nxn matrix of ones*)j = Table[1, {n, n}]; > (*centering matrix*)h = IdentityMatrix[n] - j/n; > a = -d*d/2; > b = h.a.h; > (*Eigenvectors are returned with arbitrary orientation, > orient them to point in the same halfplane*) > orient[v_, orientvec_] := ((*1,1,1,1 halfplane is often ambiguous, > use random halfplane*)(*SeedRandom[0]; > orientvec=RandomReal[{0,1},Length[v]];*) > If[Round[v, .1].orientvec > 0, -v, v]); > vecs = Eigenvectors[b][[1 ;; 2]]; > (*vecs=orient[#,b[[1]]]&/@vecs;*) > vals = Eigenvalues[b][[1 ;; 2]]; > Point[Re[#]] & /@ Transpose[vecs*Sqrt[vals]]) > Clear[d1, d2, d3, d4, d5, d6]; limits = {{{d1, 0, "1->2"}, 0, > 1}, {{d2, 0, "1->3"}, 0, 1}, {{d3, 0, "1->4"}, 0, > 1}, {{d4, 0, "2->3"}, 0, 1}, {{d5, 0, "2->4"}, 0, > 1}, {{d6, 0, "3->4"}, 0, 1}}; > Manipulate[ > Graphics[distances2points[{{0, d1, d2, d3}, {d1, 0, d4, d5}, {d2, d4, > 0, d6}, {d3, d5, d6, 0}}], PlotRange -> {{-1, 1}, {-1, 1}}], > Evaluate[Sequence @@ limits], LocalizeVariables -> False] > > > -- DrMajorBob at bigfoot.com