Re: Question on PrincipalValue in Integrate
- To: mathgroup at smc.vnet.net
- Subject: [mg80689] Re: Question on PrincipalValue in Integrate
- From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
- Date: Wed, 29 Aug 2007 04:12:44 -0400 (EDT)
- Organization: The Open University, Milton Keynes, UK
- References: <fb0u04$j8r$1@smc.vnet.net>
Jung-Tsung Shen wrote: > A question on the "PrincipalValue" in the option of the command, Integr= ate: > > Mathematica (v5.0 Mac) gives the following command > > Integrate[1/(y-x), {x, -d, d}, PrincipalValue -> True] > > the answer > > > If[y > 0 && y < d, I Pi - Log[d - y] + Log[d + y], Integrate[1/(-x + > y), {x, -d, d}, Assumptions -> d =CB=9C y || y =CB=9C 0]] > > But shouldn't the first part of the answer by - Log[d - y] + Log[d + > y], without the I Pi? This can be computed using the very definition > of the principal value. > > Any comments are greatly appreciated. > > Thanks. > > JT > > PS. Recently I have found several verified bugs in v5.0. Maybe it's > time to upgrade to v6.0? For comparison, here is what I get on my Wintel system with version 5.2 and 6.0.1. In[1]:= $Version Out[1]= 5.2 for Microsoft Windows (June 20, 2005) In[2]:= Integrate[1/(y-x),{x,-d,d},PrincipalValue\[Rule]True] Out[2]= y y y If[Re[-] >= 1 || Re[-] <= 0 || Im[-] != 0, d d d d -Log[1 - -] - Log[y] + Log[d + y], y 1 Integrate[------, {x, -d, d}, -x + y y y Assumptions -> Im[-] == 0 && 0 < Re[-] < 1, d d PrincipalValue -> True]] In[3]:= Integrate[1/(y - x), {x, -d, d}, PrincipalValue -> True, Assumptions -> 0 < y < d] Out[3]= -Log[d - y] + Log[d + y] Same expressions, but this time evaluated with version 6.0.1. In[1]:= $Version Out[1]= 6.0 for Microsoft Windows (32-bit) (June 19, 2007) In[2]:= Integrate[1/(y - x), {x, -d, d}, PrincipalValue -> True] During evaluation of In[2]:= Limit::ldir: Value of Direction -> Sign[d]= should be a number or Automatic. During evaluation of In[2]:= Limit::ldir: Value of Direction -> -Sign[d= ] should be a number or Automatic. Out[2]= y y y If[Re[-] >= 1 || Re[-] <= -1 || Im[-] != 0, d d d -Log[-d + y] + Log[d + y] + Log[-Sign[d]] - Log[Sign[d]], 1 Integrate[------, {x, -d, d}, -x + y y y Assumptions -> Im[-] == 0 && -1 < Re[-] < 1, PrincipalValue -> Tr= ue]] d d In[3]:= Integrate[1/(y - x), {x, -d, d}, PrincipalValue -> True, Assumptions -> 0 < y < d] Out[3]= d + y Log[-----] d - y -- Jean-Marc