Re: Limits of Nested Expressions
- To: mathgroup at smc.vnet.net
- Subject: [mg80762] Re: [mg80718] Limits of Nested Expressions
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Sat, 1 Sep 2007 00:24:02 -0400 (EDT)
- Reply-to: hanlonr at cox.net
Generalizing to Sqrt[c + Sqrt[c + Sqrt[c + ...]]] f[c_] = x /. Solve[Sqrt[c + x] == x, x][[2]] (1/2)*(Sqrt[4*c + 1] + 1) Looking at values of c that produce an integer Reduce[f[c] == n, c, Integers] Element[n | c, Integers] && n >= 1 && c == n^2 - n Simplify[f[n (n - 1)], n >= 1] n Table[FixedPoint[Sqrt[n (n - 1) + #] &, RandomReal[]], {n, 10}] {1.,2.,3.,4.,5.,6.,7.,8.,9.,10.} Bob Hanlon ---- Bob Hanlon <hanlonr at cox.net> wrote: > FixedPoint[N[Sqrt[5 + #], 50] &, 5] > > 2.7912878474779200032940235968640042444922282883840 > > x /. Solve[Sqrt[5 + x] == x, x][[1]] > > (1/2)*(1 + Sqrt[21]) > > N[%, 50] > > 2.7912878474779200032940235968640042444922282883840 > > % == %%% > > True > > > Bob Hanlon > > ---- Yaroslav Bulatov <yaroslavvb at gmail.com> wrote: > > Is it possible to compute the following limit in Mathematica 6? > > Limit[Nest[Sqrt[5 + #]&, 5, n], n -> Infinity] > > > > It used to be possible through Calculus`Limit package, which seems to > > be gone > > > >