Re: The integrand has evaluated to non-numerical values for all
- To: mathgroup at smc.vnet.net
- Subject: [mg83874] Re: The integrand has evaluated to non-numerical values for all
- From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
- Date: Mon, 3 Dec 2007 05:46:57 -0500 (EST)
- Organization: The Open University, Milton Keynes, UK
- References: <fitstp$69s$1@smc.vnet.net>
Kreig Hucson wrote: > Being given the function: > > f[x_,y_]:= Sin[x*y]*Exp[-(y-1)^2]/(x*y) , > > I want to integrate it with respect to y, from 0 to Infinity, and to obtain a function of x only, F[x]. > > I typed the command: > > F[x_]:= Assuming[x>0, Integrate[f[x,y],{y,0,Infinity}]] > > but the integral remained unevaluated by Mathematica 6. > > After this, I typed the command: > > F[x_]:= Assuming[x>0, NIntegrate[f[x,y],{y,0,Infinity}]] > > but I received the error message: "The integrand f[x,y] has evaluated to non-numerical values for all sampling points in the region with boundaries {{Infinity,0.}}". > I looked at the explanations of the error message and there it was suggested to give a particular value to x and to compute the integral for that particular value. I gived one particular value and I obtained the expected result. Anyway I need to obtain an analytical expression for all x>0. > > My question is, how can be performed the integral and to obtain the analytical function F[x]? You could change the form of the original expression to be written as exponentials only, then do the integration. For instance, In[1]:= expr = Sin[x*y]*Exp[-(y - 1)^2]/(x*y) Out[1]= Sin[x y] ---------------- 2 (-1 + y) E (x y) In[2]:= f = TrigToExp@expr Out[2]= 2 2 -(-1 + y) - I x y -(-1 + y) + I x y I E I E --------------------- - --------------------- 2 x y 2 x y In[3]:= F[x_] = Assuming[x > 0, Integrate[f, {y, 0, Infinity}]] Out[3]= 1 3 --------------- ((-2 - I x) (2 I + x) 2 24 E x (4 + x ) 5 1 2 HypergeometricPFQ[{1, 1}, {2, -}, -(-) (-2 I + x) ] + 2 4 2 x /2 3 (E (-2 + I x) (-2 I + x) 5 1 2 HypergeometricPFQ[{1, 1}, {2, -}, -(-) (2 I + x) ] - 2 4 2 1 - I x + x /4 I x 6 (2 E Sqrt[Pi] (-2 I + x) Erf[1 - ---] + 2 2 2 + 1/4 (2 I + x) I x 2 E Sqrt[Pi] (2 I + x) Erf[1 + ---] + 2 2 x /2 2 I x I x I E (4 + x ) (Pi Erfi[1 - ---] - Pi Erfi[1 + ---] - 2 2 2 2 Log[-2 - I x] + 2 Log[-2 + I x] + Log[-(-2 I + x) ] - 2 2 x /2 Log[-(2 I + x) ]))) / E ) In[4]:= F[2] Out[4]= 1 5 ----- (64 HypergeometricPFQ[{1, 1}, {2, -}, 2 I] + 384 E 2 1 2 5 -- (64 E HypergeometricPFQ[{1, 1}, {2, -}, -2 I] - 2 2 E 2 - 2 I 6 ((4 - 4 I) E Sqrt[Pi] Erf[1 - I] + 2 + 2 I (4 + 4 I) E Sqrt[Pi] Erf[1 + I] + 2 8 I E (I Pi + Pi Erfi[1 - I] - Pi Erfi[1 + I] - 2 Log[-2 - 2 I] + 2 Log[-2 + 2 I])))) In[5]:= % // N // Chop Out[5]= 0.453078 Regards, -- Jean-Marc