Re: FindInstance what inspite ?
- To: mathgroup at smc.vnet.net
- Subject: [mg83897] Re: [mg83861] FindInstance what inspite ?
- From: Andrzej Kozlowski <akoz at mimuw.edu.pl>
- Date: Tue, 4 Dec 2007 04:17:57 -0500 (EST)
- References: <fire9m$roc$1@smc.vnet.net> <200712020914.EAA07009@smc.vnet.net> <200712031039.FAA18775@smc.vnet.net>
On 3 Dec 2007, at 19:39, Artur wrote: > Who have idea what function uses inspite FindInstance in procedure? > \!\(FindInstance[Chop[N[Root[\(-1\) - 2\ #1 - 2\ #1\^2 - #1\^3 + #1\^5 > &, 2] \ > + Root[\(-1\) - 2\ #1 - 2\ #1\^2 - #1\^3 + #1\^5 &, 3], 500]] == a + > b\ > Root[\(-1\) - 2\ #1 - 2\ #1\^2 - #1\^3 + #1\^5 &, > 1] + c\ Root[\(-1\) - 2\ #1 - 2\ #1\^2 - #1\^3 + > #1\^5 \ > &, 1]^2 + d\ > Root[\(-1\) - 2\ #1 - 2\ #1\^2 - #1\^3 + #1\^5 &, 1]^3 + e\ > Root[\(-1\) - 2\ #1 - 2\ #1\^2 - #1\^3 + #1\^5 &, > 1]^4 && a != 0, {a, b, c, d, e}, Integers]\) > And anser is empty set {} > Good answer is {a,b,c,d,e}={-2,-3,-2,-1,2} > Who know how I can realize that procedure in Mathematica ? > > Best wishes > Artur > > > First of all your answer is incorrect. You can check it with Mathematica: I FullSimplify[ Root[-1 - 2*#1 - 2*#1^2 - #1^3 + #1^5 & , 2] + Root[-1 - 2*#1 - 2*#1^2 - #1^3 + #1^5 & , 3] == {-2, -3, -2, -1, 2} . Table[Root[#1^5 - #1^3 - 2*#1^2 - 2*#1 - 1 & , 1]^i, {i, 0, 4}]] False The correct answer is {2, 2, 2, 1, -2} or, if you prefer {-2,-2,-2,-1,2}, whic differs from yours in the second place. Neither FindInstance not Reduce or any other general algorithm based on polynomial algebra (or algebraic geometry) will work because they all work over the real or compelex number fields and you are looking for integer solutions. But in Mathematica 6 you can find this answer as follows: ToNumberField[Root[-1 - 2*#1 - 2*#1^2 - #1^3 + #1^5 & , 2] + Root[-1 - 2*#1 - 2*#1^2 - #1^3 + #1^5 & , 3], Root[-1 - 2*#1 - 2*#1^2 - #1^3 + #1^5 & , 1]] AlgebraicNumber[Root[#1^5 - #1^3 - 2*#1^2 - 2*#1 - 1 & , 1], {2, 2, 2, 1, -2}] You can check that is correct: FullSimplify[ Root[-1 - 2*#1 - 2*#1^2 - #1^3 + #1^5 & , 2] + Root[-1 - 2*#1 - 2*#1^2 - #1^3 + #1^5 & , 3] == {2, 2, 2, 1, -2} . Table[Root[#1^5 - #1^3 - 2*#1^2 - 2*#1 - 1 & , 1]^i, {i, 0, 4}]] True Best regards Andrzej Kozlowski
- References:
- Re: Interpolation in 2 D, bug?
- From: Hugh <h.g.d.goyder@cranfield.ac.uk>
- FindInstance what inspite ?
- From: Artur <grafix@csl.pl>
- Re: Interpolation in 2 D, bug?