Mathematica 9 is now available
Services & Resources / Wolfram Forums / MathGroup Archive
-----

MathGroup Archive 2007

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Eigensystem consistency

  • To: mathgroup at smc.vnet.net
  • Subject: [mg84010] Re: Eigensystem consistency
  • From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
  • Date: Thu, 6 Dec 2007 07:22:54 -0500 (EST)
  • Organization: Uni Leipzig
  • References: <fj8b16$au2$1@smc.vnet.net>
  • Reply-to: kuska at informatik.uni-leipzig.de

Hi,

because a symbolic eigenvalue/eigensystem solver
is different from a numeric one.

Regards
   Jens

Arturas Acus wrote:
> Dear group,
> 
> why these two calculations give different rezults?
> 
> 
> 
> In[1]:= N[
>  Eigensystem[{{\[Sigma]1^2, \[Rho] \[Sigma]1 \[Sigma]2}, {\[Rho] \
> \[Sigma]1 \[Sigma]2, \[Sigma]2^2}} /. {\[Sigma]1 -> 1, \[Sigma]2 -> 
>      3, \[Rho] -> 98/100}]]
> 
> Out[1]= {{9.96423, 0.0357679}, {{0.32797, 1.}, {-3.04906, 1.}}}
> 
> 
> 
> and 
> 
> In[2]:= Eigensystem[{{\[Sigma]1^2, \[Rho] \[Sigma]1 \[Sigma]2}, {\
> \[Rho] \[Sigma]1 \[Sigma]2, \[Sigma]2^2}} /. 
>   N[{\[Sigma]1 -> 1, \[Sigma]2 -> 3, \[Rho] -> 98/100}]]
> 
> Out[2]= {{9.96423, 
>   0.0357679}, {{0.311638, 0.950201}, {0.950201, -0.311638}}}
> 
> 
> 
> 
> 
> 


  • Prev by Date: Re: expressions list -> equations list
  • Next by Date: Re: Real to String
  • Previous by thread: Eigensystem consistency
  • Next by thread: Re: Eigensystem consistency