Re: Eigensystem consistency
- To: mathgroup at smc.vnet.net
- Subject: [mg84010] Re: Eigensystem consistency
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Thu, 6 Dec 2007 07:22:54 -0500 (EST)
- Organization: Uni Leipzig
- References: <fj8b16$au2$1@smc.vnet.net>
- Reply-to: kuska at informatik.uni-leipzig.de
Hi, because a symbolic eigenvalue/eigensystem solver is different from a numeric one. Regards Jens Arturas Acus wrote: > Dear group, > > why these two calculations give different rezults? > > > > In[1]:= N[ > Eigensystem[{{\[Sigma]1^2, \[Rho] \[Sigma]1 \[Sigma]2}, {\[Rho] \ > \[Sigma]1 \[Sigma]2, \[Sigma]2^2}} /. {\[Sigma]1 -> 1, \[Sigma]2 -> > 3, \[Rho] -> 98/100}]] > > Out[1]= {{9.96423, 0.0357679}, {{0.32797, 1.}, {-3.04906, 1.}}} > > > > and > > In[2]:= Eigensystem[{{\[Sigma]1^2, \[Rho] \[Sigma]1 \[Sigma]2}, {\ > \[Rho] \[Sigma]1 \[Sigma]2, \[Sigma]2^2}} /. > N[{\[Sigma]1 -> 1, \[Sigma]2 -> 3, \[Rho] -> 98/100}]] > > Out[2]= {{9.96423, > 0.0357679}, {{0.311638, 0.950201}, {0.950201, -0.311638}}} > > > > > >