Re: Eigensystem consistency

• To: mathgroup at smc.vnet.net
• Subject: [mg84010] Re: Eigensystem consistency
• From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
• Date: Thu, 6 Dec 2007 07:22:54 -0500 (EST)
• Organization: Uni Leipzig
• References: <fj8b16\$au2\$1@smc.vnet.net>

```Hi,

because a symbolic eigenvalue/eigensystem solver
is different from a numeric one.

Regards
Jens

Arturas Acus wrote:
> Dear group,
>
> why these two calculations give different rezults?
>
>
>
> In[1]:= N[
>  Eigensystem[{{\[Sigma]1^2, \[Rho] \[Sigma]1 \[Sigma]2}, {\[Rho] \
> \[Sigma]1 \[Sigma]2, \[Sigma]2^2}} /. {\[Sigma]1 -> 1, \[Sigma]2 ->
>      3, \[Rho] -> 98/100}]]
>
> Out[1]= {{9.96423, 0.0357679}, {{0.32797, 1.}, {-3.04906, 1.}}}
>
>
>
> and
>
> In[2]:= Eigensystem[{{\[Sigma]1^2, \[Rho] \[Sigma]1 \[Sigma]2}, {\
> \[Rho] \[Sigma]1 \[Sigma]2, \[Sigma]2^2}} /.
>   N[{\[Sigma]1 -> 1, \[Sigma]2 -> 3, \[Rho] -> 98/100}]]
>
> Out[2]= {{9.96423,
>   0.0357679}, {{0.311638, 0.950201}, {0.950201, -0.311638}}}
>
>
>
>
>
>

```

• Prev by Date: Re: expressions list -> equations list
• Next by Date: Re: Real to String
• Previous by thread: Eigensystem consistency
• Next by thread: Re: Eigensystem consistency