Re: Eigensystem consistency
- To: mathgroup at smc.vnet.net
- Subject: [mg84027] Re: [mg84001] Eigensystem consistency
- From: DrMajorBob <drmajorbob at bigfoot.com>
- Date: Fri, 7 Dec 2007 03:03:16 -0500 (EST)
- References: <30219775.1196952663537.JavaMail.root@m35>
- Reply-to: drmajorbob at bigfoot.com
Both results ARE "the same", to the extent that equivalent eigensystems SHOULD be the same. That is, one set of eigenvectors is just a rescaled version of the other. The reason this can occur is that N doesn't merely evaluate its argument, then change it to a Real. It controls evaluation of its argument in order to get a specific precision in the result. So Eigensystem within N computes differently. Hence these are the same, Eigensystem[{{\[Sigma]1^2, \[Rho] \[Sigma]1 \[Sigma]2}, {\[Rho] \ \[Sigma]1 \[Sigma]2, \[Sigma]2^2}} /. N[{\[Sigma]1 -> 1, \[Sigma]2 -> 3, \[Rho] -> 98/100}]] N@% {{9.96423, 0.0357679}, {{0.311638, 0.950201}, {0.950201, -0.311638}}} {{9.96423, 0.0357679}, {{0.311638, 0.950201}, {0.950201, -0.311638}}} but your first expression is "different". Bobby On Thu, 06 Dec 2007 02:12:36 -0600, Arturas Acus <acus at itpa.lt> wrote: > Dear group, > > why these two calculations give different rezults? > > > > In[1]:= N[ > Eigensystem[{{\[Sigma]1^2, \[Rho] \[Sigma]1 \[Sigma]2}, {\[Rho] \ > \[Sigma]1 \[Sigma]2, \[Sigma]2^2}} /. {\[Sigma]1 -> 1, \[Sigma]2 -> > 3, \[Rho] -> 98/100}]] > > Out[1]= {{9.96423, 0.0357679}, {{0.32797, 1.}, {-3.04906, 1.}}} > > > > and > > In[2]:= Eigensystem[{{\[Sigma]1^2, \[Rho] \[Sigma]1 \[Sigma]2}, {\ > \[Rho] \[Sigma]1 \[Sigma]2, \[Sigma]2^2}} /. > N[{\[Sigma]1 -> 1, \[Sigma]2 -> 3, \[Rho] -> 98/100}]] > > Out[2]= {{9.96423, > 0.0357679}, {{0.311638, 0.950201}, {0.950201, -0.311638}}} > > > > > > -- DrMajorBob at bigfoot.com