Re: NIntegrate bug in Mathematica 6?
- To: mathgroup at smc.vnet.net
- Subject: [mg84178] Re: [mg84168] NIntegrate bug in Mathematica 6?
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Wed, 12 Dec 2007 19:59:34 -0500 (EST)
- Reply-to: hanlonr at cox.net
Integrate works fine $Version 6.0 for Mac OS X x86 (32-bit) (June 19, 2007) Clear[logdist1, pdfLog1, m, s] logdist1 = LogNormalDistribution[(m - s^2/2), s]; pdfLog1[x_] := PDF[logdist1, x] m = 5/100; s = 2/10; Integrate[Min[100, 100 b]*pdfLog1[b], {b, 0, 5}] 50*(Erf[3/(20*Sqrt[2])] + Erf[(-3 + 100*Log[5])/ (20*Sqrt[2])] + E^(1/20)* Erfc[7/(20*Sqrt[2])]) % // N 94.14071318790147 Integrate[Min[100, 100 b]*pdfLog1[b], {b, 0, 500}] 50*(Erf[3/(20*Sqrt[2])] + Erf[(-3 + 100*Log[500])/ (20*Sqrt[2])] + E^(1/20)* Erfc[7/(20*Sqrt[2])]) % // N 94.14071318790161 Integrate[Min[100, 100 b]*pdfLog1[b], {b, 0, 10000}] 50*(Erf[3/(20*Sqrt[2])] + Erf[(-3 + 100*Log[10000])/ (20*Sqrt[2])] + E^(1/20)* Erfc[7/(20*Sqrt[2])]) % // N 94.14071318790161 Integrate[Min[100, 100 b]*pdfLog1[b], {b, 0, Infinity}] 50*(1 + Erf[3/(20*Sqrt[2])] + E^(1/20)*Erfc[7/(20*Sqrt[2])]) % // N 94.14071318790161 m = 0.05; s = 0.2; Integrate[Min[100, 100 b]*pdfLog1[b], {b, 0, 5}] 94.14071318790148 Integrate[Min[100, 100 b]*pdfLog1[b], {b, 0, 500}] 94.14071318790162 Integrate[Min[100, 100 b]*pdfLog1[b], {b, 0, 10000}] 94.14071318790162 Integrate[Min[100, 100 b]*pdfLog1[b], {b, 0, Infinity}] 94.14071318790164 Bob Hanlon ---- vlad <volodymyr.babich at gmail.com> wrote: > The following code in Mathematica 6: > > Clear[logdist1, pdfLog1, \[Mu]1, \[Sigma]1] > logdist1 = > LogNormalDistribution[(\[Mu]1 - \[Sigma]1^2/2), \[Sigma]1]; > pdfLog1[x_] := PDF[logdist1, x] > > \[Mu]1 = 0.05; > \[Sigma]1 = 0.2; > > NIntegrate[Min[100, 100 b1]*pdfLog1[b1], {b1, 0, 5}] > NIntegrate[Min[100, 100 b1]*pdfLog1[b1], {b1, 0, 500}] > NIntegrate[Min[100, 100 b1]*pdfLog1[b1], {b1, 0, 10000}] > NIntegrate[Min[100, 100 b1]*pdfLog1[b1], {b1, 0, +\[Infinity]}] > > > > Produces the following output: > > 94.1407 > > 38.1789 > > 38.1789 > > 94.1407 > > > Note that the first and the last integrals have upper bounds of 5 and > \ > [Infinity] > > The middle ones have bounds 500 and 10000 > > All of the answers should be the same (we are way in the tail of the > random variable density). I get no warnings or errors. > > Shouldn't Mathematica send me some warning that it has difficulty with > convergence? Can I get Mathematica to send me a warning? If not, > can I trust the numerical integration routines? > > Incidentally, Mathematica 5.2 give the correct answer of 94.1407 in > all four cases. > >