Re: Re: Expanding powers of cosine
- To: mathgroup at smc.vnet.net
- Subject: [mg84210] Re: [mg84191] Re: [mg84184] Expanding powers of cosine
- From: Carl Woll <carlw at wolfram.com>
- Date: Fri, 14 Dec 2007 03:55:53 -0500 (EST)
- References: <200712130102.UAA23849@smc.vnet.net> <200712130626.BAA06862@smc.vnet.net>
Andrzej Kozlowski wrote: >On 13 Dec 2007, at 10:02, michael.p.croucher at googlemail.com wrote: > > > >>Hi >> >>I would like to express even powers of Cos[x] in terms of powers of >>Sin[x] using the identity Sin[x]^2+Cos[x]^2 = 1. For example >> >>Cos[x]^4 = 1 - 2 Sin[x]^2 + Sin[x]^4 >> >>I could not get any of Mathematica's built in functions to do this for >>me so I created my own rule: >> >>expandCosn[z_] := Module[{s, res}, >> s = Cos[x]^n_ :> (1 - Sin[x]^2) Cos[x]^(n - 2) ; >> res = z //. s; >> Expand[res] >> ] >> >>which works fine: >> >>In[14]:= expandCosn[Cos[x]^4] >> >>Out[14]= 1 - 2 Sin[x]^2 + Sin[x]^4 >> >>My question is - have I missed something? Is there an easier way to >>do this? >> >>Cheers, >>Mike >> >> >> > >Here is one way. This is how to expand Cos[x]^24: > >First[GroebnerBasis[{Cos[x]^24, 1 - Cos[x]^2 - Sin[x]^2}, {Sin[x]}, > {Cos[x]}]] > > Sin[x]^24 - 12*Sin[x]^22 + 66*Sin[x]^20 - > 220*Sin[x]^18 + 495*Sin[x]^16 - 792*Sin[x]^14 + > 924*Sin[x]^12 - 792*Sin[x]^10 + 495*Sin[x]^8 - > 220*Sin[x]^6 + 66*Sin[x]^4 - 12*Sin[x]^2 + 1 > >Andrzej Kozlowski > > Another method is to rely on TrigExpand and arc trigs: In[175]:= TrigExpand[Cos[2 x]^4 /. x -> ArcSin[Sin[x]]] Out[175]= 16 sin^8(x)-32 sin^6(x)+24 sin^4(x)-8 sin^2(x)+1 Carl Woll Wolfram Research
- References:
- Expanding powers of cosine
- From: michael.p.croucher@googlemail.com
- Re: Expanding powers of cosine
- From: Andrzej Kozlowski <akoz@mimuw.edu.pl>
- Expanding powers of cosine