Re: Apart question
- To: mathgroup at smc.vnet.net
- Subject: [mg73070] Re: Apart question
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Thu, 1 Feb 2007 03:10:54 -0500 (EST)
- References: <epn9uv$cn3$1@smc.vnet.net><epp6g5$d5o$1@smc.vnet.net>
Dear Paul, I really appreciate your response. Thanks a lot! Best Regards Dimitris Anagnostou Ï/Ç Paul Abbott Ýãñáøå: > In article <epn9uv$cn3$1 at smc.vnet.net>, > "dimitris" <dimmechan at yahoo.com> wrote: > > > Dear All, > > > > In[317]:= > > f[x_]:=(x^2+2*x+4)/(x^4-7*x^2+2*x+17) > > > > In[323]:= > > Apart[f[x]] > > > > Out[323]= > > (4 + 2*x + x^2)/(17 + 2*x - 7*x^2 + x^4) > > > > In[320]:= > > Times@@Apply[#1[[1]] - #1[[2]] & , Solve[Denominator[f[x]] == 0, x], > > 1] > > Apart[(4 + 2*x + x^2)/%] > > Map[FullSimplify, %, 1] > > > > Out[320]= > > (I/2 - (1/2)*Sqrt[15 - 4*I] + x)*(-(I/2) - (1/2)*Sqrt[15 + 4*I] + > > x)*((1/2)*(I + Sqrt[15 - 4*I]) + x)* > > ((1/2)*(-I + Sqrt[15 + 4*I]) + x) > > > > Out[321]= > > (4*I*((4 + 15*I) + (1 + 2*I)*Sqrt[15 - 4*I]))/(Sqrt[15 - 4*I]*(-2*I + > > Sqrt[15 - 4*I] - Sqrt[15 + 4*I])* > > (-2*I + Sqrt[15 - 4*I] + Sqrt[15 + 4*I])*(-I + Sqrt[15 - 4*I] - > > 2*x)) - (4*I*((-4 - 15*I) + (1 + 2*I)*Sqrt[15 - 4*I]))/ > > (Sqrt[15 - 4*I]*(2*I + Sqrt[15 - 4*I] - Sqrt[15 + 4*I])*(2*I + > > Sqrt[15 - 4*I] + Sqrt[15 + 4*I])*(I + Sqrt[15 - 4*I] + 2*x)) - > > (4*((15 + 4*I) + (2 + I)*Sqrt[15 + 4*I]))/(Sqrt[15 + 4*I]*(-2*I + > > Sqrt[15 - 4*I] - Sqrt[15 + 4*I])* > > (2*I + Sqrt[15 - 4*I] + Sqrt[15 + 4*I])*(-I - Sqrt[15 + 4*I] + > > 2*x)) + (4*((-15 - 4*I) + (2 + I)*Sqrt[15 + 4*I]))/ > > (Sqrt[15 + 4*I]*(-2*I - Sqrt[15 - 4*I] + Sqrt[15 + 4*I])*(-2*I + > > Sqrt[15 - 4*I] + Sqrt[15 + 4*I])*(-I + Sqrt[15 + 4*I] + 2*x)) > > > > Out[322]= > > 1/(1 + Sqrt[-15 + 4*I] - 2*I*x) + 1/(1 - Sqrt[-15 - 4*I] + 2*I*x) + 1/ > > (1 + Sqrt[-15 - 4*I] + 2*I*x) - > > 1/(-1 + Sqrt[-15 + 4*I] + 2*I*x) > > > > In[323]:= > > Options[Apart] > > > > Out[323]= > > {Modulus -> 0, Trig -> False} > > > > Why Apart cannot provide straightly the output Out[322]? > > Why does Factor not factor the denominator into linear factors? With the > appropriate extension (Extension -> Automatic does not work), one can > factor the denominator > > Factor[(x^2 + 2*x + 4)/(x^4 - 7*x^2 + 2*x + 17), > Extension -> {Sqrt[-15 + 4*I], Sqrt[-15 - 4*I]}] > > and then obtain the desired result using Apart and FullSimplify. > > FullSimplify /@ Apart[%] > > Cheers, > Paul > > _______________________________________________________________________ > Paul Abbott Phone: 61 8 6488 2734 > School of Physics, M013 Fax: +61 8 6488 1014 > The University of Western Australia (CRICOS Provider No 00126G) > AUSTRALIA http://physics.uwa.edu.au/~paul