MainRoot Mathematica procedure
- To: mathgroup at smc.vnet.net
- Subject: [mg73083] MainRoot Mathematica procedure
- From: Artur <grafix at csl.pl>
- Date: Thu, 1 Feb 2007 04:03:34 -0500 (EST)
- References: <op.tm1dy6isat030q@dom.domain_not_set.invalid> <45C10848.9070300@wolfram.com>
I want to show "early step" of my procedure MainRoot and I would like to ask about some comments and sugestions, critics and any negative opinions because soon these will be expanded very much and all changing will be much more difficult to do as on this "early step" These working on infinite class of polynomials inside each order and on infinite number of orders. All polynomials if not reducible belonging to Froebenius Galois Groups, but procedure counting also reducible cases. Of course that is only one class inside Froebenius Galois group, what mean that we can't count mainroot of each polynomial belonging to Froebenius Galois transistive group. BEST WISHES ARTUR JASINSKI MainRoot[pol_, var_] := Module[{coeff, dim, n, x, pr, ls, pom, mroot}, coeff = CoefficientList[pol, var]; dim = Length[coeff] - 1; If[coeff[[ dim + 1]] < 0, Do[coeff[[n]] = - coeff[[n]], {n, 1, dim + 1}]]; newt = Table[Binomial[dim, x], {x, 0, dim}]; pr = coeff[[ dim + 1]]; ls = coeff[[dim]]/newt[[dim]]; pom = newt; If[OddQ[dim], Do[If[OddQ[n], pom[[n]] = ls pom[[n]], pom[[n]] = pr pom[[n]]], {n, 1, dim + 1}]; If[pom == coeff, mroot = ((pr - ls)^(1/dim) - (pr + ls)^(1/ dim))/((pr - ls)^(1/dim) + ( pr + ls)^(1/dim)), Print["Not implemented yet "]], Do[If[OddQ[n], pom[[n]] = pr pom[[n]], pom[[n]] = ls pom[[ n]]], {n, 1, dim + 1}]; If[pom == coeff, mroot = (( pr - ls)^(1/dim) - (-pr - ls)^( 1/dim))/((pr - ls)^(1/dim) + (-pr - ls)^(1/dim)), Print["Not implemented yet"]]]; Simplify[mroot]] Sample polynomials to test: MainRoot[1-12X+6 X^2-12 X^3+X^4,X] MainRoot[-3+55 #1-165 #1^2+825 #1^3-990 #1^4+2310 #1^5-1386 #1^6+1650 #1^7-495 #1^8+275 #1^9-33 #1^10+5 #1^11,#1] \!\(MainRoot[37 + 14111\ Y + 194361\ Y\^2 + 24228587 Y\^3 + 163587175\ Y\^4 + 11993150565\ Y\^5 + 52904092395\ Y\^6 + \ 2714449744545\ Y\^7 + 8797194792540\ Y\^8 + 343830300975700\ Y\^9 + \ 872877216637580\ Y\^10 + 27325131737541540\ Y\^11 + 56578314132963140\ Y\^12 \ + 1466448736581395980\ Y\^13 + 2546024135983341300\ Y\^14 + \ 55934544666747532380\ Y\^15 + 83085254304256371090\ Y\^16 + \ 1574392919002276131990\ Y\^17 + 2031515923870739112730\ Y\^18 + \ 33651497771656837791950\ Y\^19 + 38171114990623887539190\ Y\^20 + \ 558614863009503507346370\ Y\^21 + 562321663693043676605470\ Y\^22 + \ 7332648063456763430424090\ Y\^23 + 6601167356396599681890300 Y\^24 + 77237226268411241467133748\ Y\^25 + 62579066538639764984320044\ \ Y\^26 + 660807380296407288107699844\ Y\^27 + 484408329873174477100847748\ \ Y\^28 + 4638672497154583180066365900 Y\^29 + 3090191069880595802195063220\ Y\^30 + \ 26944203042611890686794095260\ Y\^31 + 16373028491222189048727068835\ Y\^32 + \ 130434437456280289006525961145\ Y\^33 + 72525803566287236695341828975\ Y\^34 \ + 529410363793137643614723018765\ Y\^35 + 270072278042079138551225286945\ \ Y\^36 + 1810806019100251579811319874995\ Y\^37 + \ 849402285563352738743611819965\ Y\^38 + 5241806897395465099453820690775\ \ Y\^39 + 2265072761502273969982964853240\ Y\^40 + \ 12887174030669826390852320137320\ Y\^41 + 5137847971212475102644286130520\ \ Y\^42 + 26987426458468041755372909612040\ Y\^43 + \ 9938965948539988834924993254600\ Y\^44 + 48250247304533771623242474760920\ \ Y\^45 + 16430503128455962218895327013160\ Y\^46 + 73781367987413806191692701923960\ Y\^47 + \ 23247414000900457182054026518620\ Y\^48 + 96618458078756174774835681090900\ Y\^49 + \ 28181559013336472583959370922572\ Y\^50 + 108440010596627518511992046777316\ \ Y\^51 + 29286718190330059744114640370516\ Y\^52 + \ 104347934725056668756822535578172\ Y\^53 + 26094036123459696836999417520900\ \ Y\^54 + 86078262651982773890308152244620\ Y\^55 + \ 19926354857914677584617737015960\ Y\^56 + 60837268340499103351044859481160\ Y\ \^57 + 13031088688085763139123880044920\ Y\^58 + \ 36801036079729147848235785834600\ Y\^59 + 7288575028929325145611661720040\ \ Y\^60 + 19023923569084029434115329726520\ Y\^61 + \ 3480477657918128295339677701320\ Y\^62 + 8386891035832744159126113105240\ \ Y\^63 + 1415670475938921231239353033275\ Y\^64 + \ 3145084138437279059672292414465\ Y\^65 + 489049800778900061700867411495\ \ Y\^66 + 999997353831482215716699035445\ Y\^67 + \ 142979441316394838056531034265\ Y\^68 + 268541488880577065601671096475\ Y\^69 \ + 35226818875053800680594602645\ Y\^70 + 60624456845876754045286714335\ Y\^71 \ + 7276901551654306243878697260 Y\^72 + 11442058826314638510830369220\ Y\^73 + \ 1252780163465106406295295900\ Y\^74 + 1793620032233105496292328148\ Y\^75 + \ 178466226795380070510838644\ Y\^76 + 231711678805233724401401244\ Y\^77 + \ 20859688846213254994773348\ Y\^78 + 24442160211522544768080300\ Y\^79 + \ 1980350206918979904567090\ Y\^80 + 2082109943944513072836470\ Y\^81 + \ 150866787820084888845370\ Y\^82 + 141336290640958718726190\ Y\^83 + \ 9088360712053306556950\ Y\^84 + 7522099501899763741730\ Y\^85 + \ 425201007321782604990\ Y\^86 + 307639995667111428090\ Y\^87 + \ 15106409873501158380\ Y\^88 + 9427170449451831300\ Y\^89 + 396048198930741980\ \ Y\^90 + 209492676654485140\ Y\^91 + 7379780104299540\ Y\^92 + \ 3232004829171580\ Y\^93 + 92859278365700\ Y\^94 + 32573396934540\ Y\^95 + \ 733099566045\ Y\^96 + 195888125895\ Y\^97 + 3239026065\ Y\^98 + 605714675\ \ Y\^99 + 6543487\ Y\^100 + 719661\ Y\^101 + 3811\ Y\^102 + 137\ Y\^103, Y]\)