Nice Integrate setting
- To: mathgroup at smc.vnet.net
- Subject: [mg73104] Nice Integrate setting
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Fri, 2 Feb 2007 05:43:48 -0500 (EST)
I noticed a nice undocumentated (possibly ???) setting of Integrate which I am sure it is known to the Mathematica gurus of this forum but I think it deserves to be mentioned: Instead of something like IIn[12]:= Integrate[Log[x], x] Integrate[%, x] Integrate[%, x] Simplify[%] Out[12]= -x + x*Log[x] Out[13]= -((3*x^2)/4) + (1/2)*x^2*Log[x] Out[14]= -((11*x^3)/36) + (1/6)*x^3*Log[x] Out[15]= (1/36)*x^3*(-11 + 6*Log[x]) one can simply execute the command In[16]:= Integrate[Log[x], x, x, x] Out[16]= (1/36)*x^3*(-11 + 6*Log[x]) Similarly, In[20]:= Timing[Integrate[Cos[x^2], x, x, x, x, x, x]] Out[20]= {0.6399999999999988*Second, (1/960)*(Sqrt[2*Pi]*x*(-15 + 4*x^4)*FresnelC[Sqrt[2/Pi]*x] - 2*(9*x^2*Cos[x^2] + 10*Sqrt[2*Pi]*x^3*FresnelS[Sqrt[2/Pi]*x] + 2*(-2 + x^4)*Sin[x^2]))} and so on e.g. In[23]:= (TableForm[#1, TableAlignments -> Center] & )[({#1, Integrate[1/ Sqrt[x], Sequence @@ Table[x, {#1}]]} & ) /@ Range[10]] BTW, the D function can also take the same setting In[25]:= D[BesselJ[0, x], {x, 5}] == D[BesselJ[0, x], x, x, x, x, x] Out[25]= True Dimitris