Re: numerical_solution
- To: mathgroup at smc.vnet.net
- Subject: [mg73372] Re: numerical_solution
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Wed, 14 Feb 2007 05:22:03 -0500 (EST)
- References: <eqsa2a$jmb$1@smc.vnet.net>
Your system appeared with extra "=" both in solution1 and solution2 which made it very unreadable. Please send again your post without them in order to get a reply. Dimitris =CF/=C7 j. r. campanha =DD=E3=F1=E1=F8=E5: > Dear MathGroup people > > > How can I know which is the best numerical solution? > > > w == 6; > A == 0.1; > B == 0.17; > F == 0.501; > > solution1 == NDSolve[{x'[t] ==== v[t], v'[t] ==== -(B)*(v[t]) - (A)*(((x[t]))/(1 - (x[t])^2)) + (F)*(Cos[w*t]),x[0] ==== 0.4, v[0] ==== = 0.3}, {x, v}, {t, 260, 270}]; > > ParametricPlot[Evaluate[{x[t], v[t]} /. solution1], {t, 260, 270}, Frame -> > True] > > > OR > > solution2 == NDSolve[{x'[t] ==== v[t], v'[t] ==== -(B)*(v[t]) - (A)*(((x[t]))/(1 - (x[t])^2)) + (F)*(Cos[w*t]),x[0] ==== 0.4, v[0] ==== = 0.3}, {x, v}, {t, 260, 270}, Method -> StiffnessSwitching]; > > > ParametricPlot[Evaluate[{x[t], v[t]} /. solution2], {t, 260, 270}, Frame -> > True] > > > > Jose R. Campanha > UNESP-Physics Dpto > Rio Claro - S=E3o Paulo > Brasil