Mathematica 9 is now available
Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2007
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2007

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: system of equations

  • To: mathgroup at smc.vnet.net
  • Subject: [mg73362] Re: system of equations
  • From: "dimitris" <dimmechan at yahoo.com>
  • Date: Wed, 14 Feb 2007 05:16:35 -0500 (EST)
  • References: <eqs96r$iie$1@smc.vnet.net>

Hi Lena.

Your post is very unreadable.

For example the two variables appears as
=E2=80=9Ckheute=E2=80=9D and =E2=80=9CMheute=E2=80==
9D

Also they appeared a lot of unnecessary "=" so I was not able to
figure out what is going on.

Try to repost the mail.



Dimitris


=CF/=C7 Lena Calahorrano =DD=E3=F1=E1=F8=E5:
> Maybe someone can help me solving a system of equations:
>
> I have two equations each of which depends on the the two variables =E2=
=80
> =9Ckheute=E2=80=9D and =E2=80=9CMheute=E2=80=9D and I=
 am interested in the
> value of these two variables.
>
>
>
> The equations look like this, where all parameters are known:
>
>
>
> kheute=C5=A0l*(1/(1+n)*((1-a)*A*Part[f[t],1]^a*(b^2/f+b/f)-(1-a)*A*kh=
eute^a
> /(1+a*A*kheute^(a-1)-d))+1/(1+n)^2*b^2/f*((1-a)*A*Part[f[t],1]^a+(1+a*A*P=
art[f[t],1]^(a-1)-d)*(1-a)*A*Part[f[t-1],1]))/((2+n)/(1+n)+Mheute/bev)
>
>
>
> kheute====l*(1/(1+An)*((1-a)*A*Part[Af[t],1]^a*(b^2/f+b/f)-(1-a)*=
A*kheute^a/(1+a*A*kheute^(a-1)-d))+1/(1+An)^2*b^2/f*((1-a)*A*Part[Af[t],1]^=
a+(1+a*A*Part[Af[t],1]^(a-1)-d)*(1-a)*A*Part[Af[t-1],1]))/((2+An)/(1+An)-Mh=
eute/bevA)
>
>
>
>
>
> I can express =E2=80=9Ckheute=E2=80=9D as a function of =E2=
=80=9CMheute=E2=80=9D, I can plot the two functions and see where=
 they intersect:
>
>
>
>
>
> solInland==Solve[Simplify[kheute=C5=A0l*(1/(1+n)*((1-a)*A*Part[f[=
t],1]^a*(b^2/f+b/f)-(1-a)*A*kheute^a/(1+a*A*kheute^(a-1)-d))+1/(1+n)^2*b^2/=
f*((1-a)*A*Part[f[t],1]^a+(1+a*A*Part[f[t],1]^(a-1)-d)*(1-a)*A*Part[f[t-1],=
1]))/((2+n)/(1+n)+Mheute/bev)],Mheute]
>
>
>
> mInland==Part[Mheute/.solInland,1]
>
> f[kheute_]:==mInland
>
> grafikInland==Plot[f[kheute],{kheute,0.04,0.14},PlotStyle=C2=AE{R=
GBColor[1,0, 0.501961]}];
>
>
>
>
>
> solAusland==Solve[Simplify[kheute====l*(1/(1+An)*((1-a)*A*Par=
t[Af[t],1]^a*(b^2/f+b/f)-(1-a)*A*kheute^a/(1+a*A*kheute^(a-1)-d))+1/(1+An)^=
2*b^2/f*((1-a)*A*Part[Af[t],1]^a+(1+a*A*Part[Af[t],1]^(a-1)-d)*(1-a)*A*Part=
[Af[t-1],1]))/((2+An)/(1+An)-Mheute/bevA)],Mheute]
>
> mAusland==Part[Mheute/.solAusland,1]
>
> g[kheute_]:==mAusland
>
> grafikAusland==Plot[g[kheute],{kheute,0.04,0.14}];
>
>
>
> vergl==Show[grafikInland,grafikAusland];
>
>
>
>
>
> But when I try to solve for =E2=80=9Ckheute=E2=80=9D, Mathema=
tica runs forever. This is a problem because I eventually want to compute a=
bout 50 more steps.
>
>
>
>
>
> Solve[Simplify[mInland=C5=A0mAusland],kheute]
>
>
>
>
>
> Is there a better way to do this kind of computation?
>
>
>
> Best regards,
>
> Lena Calahorrano
>
>
>
>
>
>
>
>
>
> Lena Calahorrano
>
> Lehr- und Forschungsgebiet
>
> Internationale Wirtschaftsbeziehungen
>
> RWTH Aachen
>
> Templergraben 64
>
> 52056 Aachen
>
> 0241-80-93934
>
> lena.calahorrano at rwth-aachen.de
> http://www.iw.rwth-aachen.de



  • Prev by Date: Re: Dotted Lines at Discontinuities
  • Next by Date: Removing constant multiples from polynomials
  • Previous by thread: system of equations
  • Next by thread: Re: system of equations