Re: real function argument
- To: mathgroup at smc.vnet.net
- Subject: [mg73427] Re: real function argument
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Fri, 16 Feb 2007 00:59:15 -0500 (EST)
- References: <er1bq1$7ci$1@smc.vnet.net>
Use ComplexExpand In[5]:= Information@ComplexExpand >From In[5]:= "ComplexExpand[expr] expands expr assuming that all variables are real. ComplexExpand[expr, {x1, x2, ... }] expands expr \ assuming that variables matching any of the xi are complex." >From In[5]:= Attributes[ComplexExpand] = {Protected, ReadProtected} Options[ComplexExpand] = {TargetFunctions -> {Re, Im, Abs, Arg, Conjugate, Sign}} In[12]:= f[x_] := Re[Cos[x] + I*Sin[x]] In[13]:= Derivative[1][f][x] Out[13]= (-Cos[x])*Derivative[1][Im][Sin[x]] - Sin[x]*Derivative[1][Re][Cos[x]] In[14]:= ComplexExpand[%] Out[14]= -Sin[x] Dimitris =CF/=C7 bar at ANTYSPAM.ap.krakow.pl =DD=E3=F1=E1=F8=E5: > Hi, > I have a problrm with defining real argument > > In: f[x_]:=Re[Cos[x]+I Sin[x]] > f'[x] > > Out: -Cos[x] Im'[x]-Sin[x]Re'[x] > > In: FullSimplify[f'[x],Element[x,Reals]] > gives the same out > > Any suggestions ? > > Regards, Olaf