LogPlot and Epilog
- To: mathgroup at smc.vnet.net
- Subject: [mg73547] LogPlot and Epilog
- From: "ben" <benjamin.friedrich at gmail.com>
- Date: Wed, 21 Feb 2007 01:55:55 -0500 (EST)
Dear group,
I want to add a bit of documention on LogPlot and Epilog,
since I haven't found anything about this in the group.
When you use Epilog/Prolog within LogPlot or LogLogPlot,
you have to take the logarithm with respect to base 10 of the
coordinates in your graphics primitives.
I found this a bit odd since PlotRange for example expects normal
coordinates.
Some examples are shown below
Bye
Ben
\!\(f[x_] := x\^3\[IndentingNewLine]
\(LogPlot[
f[x], {x, 0.1, 1.1}, \[IndentingNewLine]PlotRange -> {f[0.1],
1.3} //
Evaluate, \[IndentingNewLine]Epilog -> {Red, \
\[IndentingNewLine]PointSize[
0.05], \[IndentingNewLine]Point /@ \((\({#[\([\)\(1\)\(]
\)],
Log[10, #[\([\)\(2\)\(]\)]]} &\) /@ {{0.1,
f[0.1]}, {1,
f[1]}})\), \[IndentingNewLine]Line[\({#[\([\)\(1\)\
(]\)],
Log[10, #[\([2]\)]]} &\) /@ {{0.1, f[0.1]}, {1,
f[1]}}]}];\)\)
\!\(f[x_] := x\^3\[IndentingNewLine]
\(LogLogPlot[
f[x], {x, 0.1, 1.1}, \[IndentingNewLine]PlotRange -> {f[0.1],
1.3} //
Evaluate, \[IndentingNewLine]Epilog -> {Red, \
\[IndentingNewLine]PointSize[
0.05], \[IndentingNewLine]Point /@ \((\(Log[10, #] &\) /@
{{0.1,
f[0.1]}, {1, f[1]}})\), \[IndentingNewLine]Line[\
(Log[
10, #] &\) /@ {{0.1, f[0.1]}, {1, f[1]}}]}];\)\)