       LogPlot and Epilog

• To: mathgroup at smc.vnet.net
• Subject: [mg73547] LogPlot and Epilog
• From: "ben" <benjamin.friedrich at gmail.com>
• Date: Wed, 21 Feb 2007 01:55:55 -0500 (EST)

```Dear group,

I want to add a bit of documention on LogPlot and Epilog,

When you use Epilog/Prolog within LogPlot or LogLogPlot,
you have to take the logarithm with respect to base 10 of the
I found this a bit odd since PlotRange for example expects normal
coordinates.

Some examples are shown below

Bye
Ben

\!\(f[x_] := x\^3\[IndentingNewLine]
\(LogPlot[
f[x], {x, 0.1, 1.1}, \[IndentingNewLine]PlotRange -> {f[0.1],
1.3} //
Evaluate, \[IndentingNewLine]Epilog -> {Red, \
\[IndentingNewLine]PointSize[
0.05], \[IndentingNewLine]Point /@ \((\({#[\([\)\(1\)\(]
\)],
Log[10, #[\([\)\(2\)\(]\)]]} &\) /@ {{0.1,
f[0.1]}, {1,
f}})\), \[IndentingNewLine]Line[\({#[\([\)\(1\)\
(]\)],
Log[10, #[\(\)]]} &\) /@ {{0.1, f[0.1]}, {1,
f}}]}];\)\)

\!\(f[x_] := x\^3\[IndentingNewLine]
\(LogLogPlot[
f[x], {x, 0.1, 1.1}, \[IndentingNewLine]PlotRange -> {f[0.1],
1.3} //
Evaluate, \[IndentingNewLine]Epilog -> {Red, \
\[IndentingNewLine]PointSize[
0.05], \[IndentingNewLine]Point /@ \((\(Log[10, #] &\) /@
{{0.1,
f[0.1]}, {1, f}})\), \[IndentingNewLine]Line[\
(Log[
10, #] &\) /@ {{0.1, f[0.1]}, {1, f}}]}];\)\)

```

• Prev by Date: Re: Precision issues
• Next by Date: Re: Re: obtaining an ordered subset of k elements
• Previous by thread: Re: Find index of maximal element in multi-dimensional
• Next by thread: Approximate/asymptotic factorization