LogPlot and Epilog
- To: mathgroup at smc.vnet.net
- Subject: [mg73547] LogPlot and Epilog
- From: "ben" <benjamin.friedrich at gmail.com>
- Date: Wed, 21 Feb 2007 01:55:55 -0500 (EST)
Dear group, I want to add a bit of documention on LogPlot and Epilog, since I haven't found anything about this in the group. When you use Epilog/Prolog within LogPlot or LogLogPlot, you have to take the logarithm with respect to base 10 of the coordinates in your graphics primitives. I found this a bit odd since PlotRange for example expects normal coordinates. Some examples are shown below Bye Ben \!\(f[x_] := x\^3\[IndentingNewLine] \(LogPlot[ f[x], {x, 0.1, 1.1}, \[IndentingNewLine]PlotRange -> {f[0.1], 1.3} // Evaluate, \[IndentingNewLine]Epilog -> {Red, \ \[IndentingNewLine]PointSize[ 0.05], \[IndentingNewLine]Point /@ \((\({#[\([\)\(1\)\(] \)], Log[10, #[\([\)\(2\)\(]\)]]} &\) /@ {{0.1, f[0.1]}, {1, f[1]}})\), \[IndentingNewLine]Line[\({#[\([\)\(1\)\ (]\)], Log[10, #[\([2]\)]]} &\) /@ {{0.1, f[0.1]}, {1, f[1]}}]}];\)\) \!\(f[x_] := x\^3\[IndentingNewLine] \(LogLogPlot[ f[x], {x, 0.1, 1.1}, \[IndentingNewLine]PlotRange -> {f[0.1], 1.3} // Evaluate, \[IndentingNewLine]Epilog -> {Red, \ \[IndentingNewLine]PointSize[ 0.05], \[IndentingNewLine]Point /@ \((\(Log[10, #] &\) /@ {{0.1, f[0.1]}, {1, f[1]}})\), \[IndentingNewLine]Line[\ (Log[ 10, #] &\) /@ {{0.1, f[0.1]}, {1, f[1]}}]}];\)\)