Re: Limit of Error function Erf
- To: mathgroup at smc.vnet.net
- Subject: [mg73570] Re: Limit of Error function Erf
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Thu, 22 Feb 2007 04:29:50 -0500 (EST)
- References: <ergpqn$hbq$1@smc.vnet.net>
Hi Ben. It would be very good to post your queries with the Mathematica inputs/ outputs in InputForm. A quick way to do that is by simply selecting the Cells and press Shift +Ctrl+I. Here is your (?, if I understood well) function f[a_, t_] := Erf[1/Sqrt[a*t]] Here is its behavior w.r.t. t and a (for possitive values of both the variable and the parameter). (Plot[f[#1, t], {t, 0, 20}, PlotStyle -> AbsoluteThickness[2], Axes -> False, Frame -> {True, True, False, False}, PlotRange -> {{-0.01, 20.02}, {-0.01, 1.02}}, PlotLabel -> " a = "NumberForm[#1, {4, 2}, NumberPadding -> {"0", "0"}], TextStyle -> {FontSize -> 14, FontFamily -> "Times"}] & ) /@ Range[0.5, 10, 0.5]; SelectionMove[EvaluationNotebook[], All, GeneratedCell]; FrontEndTokenExecute["CellGroup"]; FrontEndTokenExecute["OpenCloseGroup"]; Note also << "NumericalMath`NLimit`" (NLimit[f[#1, z], z -> Infinity, Terms -> 30, WorkingPrecision -> 40] & ) /@ Range[10] {-8.716924561433210486410936266571876625`24.29557956276237*^-12, -1.269275660096993061044545254729341002`23.672436370455248*^-12, -2.86213569331613466882254063714466158`23.079703797051316*^-13, -4.3828770303475029188837881665772226`22.273459290696994*^-14, 3=2E2217955602193993240763347697441065`22.13952029101826*^-14, 5.7599600309850567850382333549004589`22.421383458426906*^-14, 6=2E4801395943535415032619770496493483`22.5834664699494*^-14, 6.4912088408225900313727551447536176`22.599662616855426*^-14, 6=2E2215385073249535229051137148001572`22.593986272913366*^-14, 5.8500495991844001124169155219126662`22.678503185217146*^-14} (Limit[f[#1, z], z -> Infinity] & ) /@ Range[10] {0, 0, 0, 0, 0, 0, 0, 0, 0, 0} Limit[Erf[z], z -> 0] 0 So, you have encountered a bug, I also believe. Dimitris =CF/=C7 ben =DD=E3=F1=E1=F8=E5: > Dear group > > I dont understand the following behaviour of Mathematica, > I would say the first result is simply wrong > > 1.) > > Limit[Erf[1\/Sqrt[\[Alpha]\ t]], t -> \[Infinity], > Assumptions -> {\[Alpha] > 0}] > > gives infinity > > 2.) > > Limit[Erf[1\/Sqrt[\[Alpha]\ t]], t -> \[Infinity], > Assumptions -> {\[Alpha] == 1}] > > gives zero > > Any suggestions? Is this a bug? > Bye > Ben