simple question
- To: mathgroup at smc.vnet.net
- Subject: [mg73661] simple question
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Sat, 24 Feb 2007 02:12:50 -0500 (EST)
Hello. This post has a connection with a recent post of David Cantrell. (I hope I don't miss anything!) Consider the functions In[37]:= I1 = Pi/2 - ArcTan[u]; I2 = ArcTan[1/u]; For u>=0 the functions are equal as the following demonstrates In[39]:= Show[Block[{$DisplayFunction = Identity}, (Plot[{I1, I2}, {u, #1[[1]], #1[[2]]}, PlotPoints -> 100, Axes -> False, Frame -> {True, True, False, False}, PlotStyle -> {Red, Blue}, FrameTicks -> {Range[-2*Pi, 2*Pi, Pi], Range[-2, 4, 1]}] & ) /@ Partition[Range[-2*Pi, 2*Pi, Pi], 2, 1]]] In[43]:= I1 /. u -> 0 (Limit[I2, u -> 0, Direction -> #1] & ) /@ {1, -1} Out[43]= Pi/2 Out[44]= {-(Pi/2), Pi/2} However None of these work In[81]:= FullSimplify[I1 - I2, u > 0] FullSimplify[I1 == I2, u > 0] FullSimplify[I1 - I2 == 0, u > 0] Out[81]= (1/2)*(Pi - 2*ArcCot[u] - 2*ArcTan[u]) Out[82]= 2*(ArcCot[u] + ArcTan[u]) == Pi Out[83]= 2*(ArcCot[u] + ArcTan[u]) == Pi Even for specific u we don't have "simplification" to zero In[111]:= FullSimplify[I1 - I2 /. u -> Pi] N[%] Out[111]= (1/2)*(Pi - 2*(ArcCot[Pi] + ArcTan[Pi])) Out[112]= -2.220446049250313*^-16 Any ideas how to show that I1-I2=0 (or I1=I2) symbolically? I personally tried (based on relevant material on the Help Browser, M. Trott's Guidebook for Symbolics and Dana DeLouis' solution to David's original post) In[40]:= equ = TrigToExp[I1 - I2 /. u -> Pi/2] avoid = Count[#1, _ArcTan | _ArcCot | _ArcSin | _ArcCos | _ArcCsc | _ArcSec | _Log, Infinity] & ; FullSimplify[equ, ComplexityFunction -> avoid] Out[40]= Pi/2 - (1/2)*I*Log[1 - (2*I)/Pi] + (1/2)*I*Log[1 + (2*I)/Pi] - (1/2)*I*Log[1 - (I*Pi)/2] + (1/2)*I*Log[1 + (I*Pi)/2] Out[42]= 0 In[43]:= equ = TrigToExp[I1 - I2 /. u -> Pi/3] avoid = Count[#1, _ArcTan | _ArcCot | _ArcSin | _ArcCos | _ArcCsc | _ArcSec | _Log, Infinity] & ; FullSimplify[equ, ComplexityFunction -> avoid] Out[43]= Pi/2 - (1/2)*I*Log[1 - (3*I)/Pi] + (1/2)*I*Log[1 + (3*I)/Pi] - (1/2)*I*Log[1 - (I*Pi)/3] + (1/2)*I*Log[1 + (I*Pi)/3] Out[45]= 0 However this approach is not general; for example In[84]:= equ = TrigToExp[I1 - I2 /. u -> Pi/4] avoid = Count[#1, _ArcTan | _ArcCot | _ArcSin | _ArcCos | _ArcCsc | _ArcSec | _Log, Infinity] & ; FullSimplify[equ, ComplexityFunction -> avoid] Out[84]= Pi/2 - (1/2)*I*Log[1 - (4*I)/Pi] + (1/2)*I*Log[1 + (4*I)/Pi] - (1/2)*I*Log[1 - (I*Pi)/4] + (1/2)*I*Log[1 + (I*Pi)/4] Out[86]= (-(1/2))*I*(I*Pi + 2*Pi*Floor[(Pi - Arg[(-((-4*I - Pi)/(4*I - Pi)))^(- I)] - Arg[((-4*I + Pi)/(4*I + Pi))^(-I)])/(2*Pi)] + I*Log[1/((-((-4*I - Pi)/(4*I - Pi)))^I*((-4*I + Pi)/(4*I + Pi))^I)]) Also it fails for u unspecified in advance In[93]:= equ = TrigToExp[I1 - I2]; avoid = Count[#1, _ArcTan | _ArcCot | _ArcSin | _ArcCos | _ArcCsc | _ArcSec | _Log, Infinity] & ; FullSimplify[equ, ComplexityFunction -> avoid] FullSimplify[%, u > 0] Out[95]= (1/2)*(Pi - I*Log[1 - I*u] + I*Log[1 + I*u] - I*Log[(-I + u)/u] + I*Log[(I + u)/u]) Out[96]= (-(1/2))*I*(Log[I - u] + Log[1 - I*u] - Log[1 + I*u] - Log[I + u]) Thanks in advance for your response! Dimitris
- Follow-Ups:
- Re: simple question
- From: Andrzej Kozlowski <akoz@mimuw.edu.pl>
- Re: simple question