curious results form Integrate
- To: mathgroup at smc.vnet.net
- Subject: [mg73730] curious results form Integrate
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Tue, 27 Feb 2007 05:39:42 -0500 (EST)
Hello to all. $Version "5.2 for Microsoft Windows (June 20, 2005)" Integrate[Sin[x + x0]/(x + x0), {x, -Infinity, Infinity}] Pi (*correct regrardless x0; there is an integrable singularity at x=- x0*) Limit[Sin[x + x0]/(x + x0), x -> -x0] 1 Integrate[Sin[x + x0]/(x + x0), {x, -Infinity, x0, Infinity}] Expand[%] Pi/2 + (1/2)*(Pi - 2*SinIntegral[2*x0]) + SinIntegral[2*x0] Pi (NIntegrate[Sin[x + #1]/(x + #1), {x, -Infinity, Infinity}, Method -> Oscillatory] & ) /@ Range[-3, 3] {3.14159,3.14159,3.14159,3.14159,3.14159,3.14159,3.14159} HOWEVER Integrate[Sin[x + d]/(x + d), {x, -Infinity, 0}] Integrate[Sin[x + d]/(x + d), {x, 0, Infinity}] If[Im[d] != 0 || Re[d] <= 0, Pi/2 + SinIntegral[d], Integrate[Sin[d - x]/(d - x), {x, 0, Infinity}, Assumptions -> d > 0]] If[Im[d] != 0 || Re[d] >= 0, (1/2)*(Pi - 2*SinIntegral[d]), Integrate[Sin[d + x]/(d + x), {x, 0, Infinity}, Assumptions -> d < 0]] I don't understand the presence of the If's statements. Note also that some of the integrals below stay unevaluated! (Integrate[Sin[x + #1]/(x + #1), {x, -Infinity, Infinity}] & ) /@ Range[-3, 3] (Integrate[Sin[x + #1]/(x + #1), {x, -Infinity, 0}] & ) /@ Range[-3, 3] (Integrate[Sin[x + #1]/(x + #1), {x, 0, Infinity}] & ) /@ Range[-3, 3] {Integrate[-(Sin[3 - x]/(-3 + x)), {x, -Infinity, Infinity}], Integrate[-(Sin[2 - x]/(-2 + x)), {x, -Infinity, Infinity}], Integrate[-(Sin[1 - x]/(-1 + x)), {x, -Infinity, Infinity}], Pi, Integrate[Sin[1 + x]/(1 + x), {x, -Infinity, Infinity}], Integrate[Sin[2 + x]/(2 + x), {x, -Infinity, Infinity}], Integrate[Sin[3 + x]/(3 + x), {x, -Infinity, Infinity}]} {(1/2)*(Pi - 2*SinIntegral[3]), (1/2)*(Pi - 2*SinIntegral[2]), (1/2)*(Pi - 2*SinIntegral[1]), Pi/2, Integrate[Sin[1 + x]/(1 + x), {x, -Infinity, 0}], Integrate[Sin[2 + x]/(2 + x), {x, -Infinity, 0}], Integrate[Sin[3 + x]/(3 + x), {x, -Infinity, 0}]} {Integrate[-(Sin[3 - x]/(-3 + x)), {x, 0, Infinity}], Integrate[- (Sin[2 - x]/(-2 + x)), {x, 0, Infinity}], Integrate[-(Sin[1 - x]/(-1 + x)), {x, 0, Infinity}], Pi/2, (1/2)*(Pi - 2*SinIntegral[1]), (1/2)*(Pi - 2*SinIntegral[2]), (1/2)*(Pi - 2*SinIntegral[3])} Of course NIntegrate works correctly: (NIntegrate[Sin[x + #1]/(x + #1), {x, -Infinity, 0}, Method -> Oscillatory] & ) /@ Range[-3, 3] (NIntegrate[Sin[x + #1]/(x + #1), {x, 0, Infinity}, Method -> Oscillatory] & ) /@ Range[-3, 3] % + %% {-0.277856,-0.0346167,0.624713,1.5708,2.51688,3.17621,3.41945} {3.41945,3.17621,2.51688,1.5708,0.624713,-0.0346167,-0.277856} {3.14159,3.14159,3.14159,3.14159,3.14159,3.14159,3.14159}