Unexpected Integrate::idiv : (Warning message)
- To: mathgroup at smc.vnet.net
- Subject: [mg73779] Unexpected Integrate::idiv : (Warning message)
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Wed, 28 Feb 2007 04:33:26 -0500 (EST)
In[2]:= $Version Out[2]= "5.2 for Microsoft Windows (June 20, 2005)" In[3]:= Clear["Global`*"] In[4]:= Integrate[Cos[a*x]*CosIntegral[b*x], {x, 0, Infinity}] Integrate::idiv: Integral of Cos[a\x]\CosIntegral[b\x] does not converge on {0, =E2=88=9E}. Out[4]= Integrate[Cos[a*x]*CosIntegral[b*x], {x, 0, Infinity}] However In[9]:= (Integrate[Cos[#1[[1]]*x]*CosIntegral[#1[[2]]*x], { x, 0, Infinity}] & ) /@ {{3, 2}, {2, 2}, {2, 3}} N@% Out[9]= {-(Pi/6), -(Pi/8), 0} Out[10]= {-0.523599,-0.392699,0.} results which agree with Gradshteyn and Ryzhik formula. (Integrate[ CosIntegral[a x] Cos[b x], {x,0,Infinity} ] is equal to -(Pi/(2 a)) if a^2>b^2; zero if a^2<b^2; -(Pi/(4 p)) if a^2=b^2) Interestingly the following setting does not work In[10]:= Integrate[Cos[a*x]*CosIntegral[b*x], {x, 0, Infinity}, GenerateConditions -> False] Out[10]= Integrate[Cos[a*x]*CosIntegral[b*x], {x, 0, Infinity}, GenerateConditions -> False] More interestingly the following setting work in desirable way In[98]:= Integrate[Cos[a*x]*CosIntegral[b*x], x] FullSimplify[%] FullSimplify[Limit[%, x -> Infinity, Assumptions -> a > 0 && b > 0] - Limit[%, x -> 0, Assumptions -> a > 0 && b > 0]] {(FullSimplify[#1, a > b] & )[%], (FullSimplify[#1, a < b] & )[%]} Integrate[Cos[a*x]*CosIntegral[a*x], x] Limit[%, x -> Infinity, Assumptions -> a > 0] - Limit[%, x -> 0, Assumptions -> a > 0] Out[98]= (I*(-ExpIntegralEi[(-I)*a*x - I*b*x] + ExpIntegralEi[I*a*x - I*b*x] - ExpIntegralEi[(-I)*a*x + I*b*x] + ExpIntegralEi[I*a*x + I*b*x]))/(4*a) + (CosIntegral[b*x]*Sin[a*x])/a Out[99]= -((1/(4*a))*(I*(ExpIntegralEi[(-I)*(a - b)*x] - ExpIntegralEi[I*(a - b)*x] + ExpIntegralEi[(-I)*(a + b)*x] - ExpIntegralEi[I*(a + b)*x] + 4*I*CosIntegral[b*x]*Sin[a*x]))) Out[100]= -((Pi*(1 + Sign[a - b]))/(4*a*Sign[a - b])) Out[101]= {-(Pi/(2*a)), 0} Out[102]= (CosIntegral[a*x]*Sin[a*x])/a - SinIntegral[2*a*x]/(2*a) Out[103]= -(Pi/(4*a)) Dimitris