Re: ListDimension function
- To: mathgroup at smc.vnet.net
- Subject: [mg72603] Re: ListDimension function
- From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
- Date: Thu, 11 Jan 2007 05:28:56 -0500 (EST)
- Organization: The Open University, Milton Keynes, UK
- References: <eo25ue$as5$1@smc.vnet.net> <eo4nh9$lon$1@smc.vnet.net>
carlos at colorado.edu wrote: > Many thanks to all of you who sent me solutions by direct email. > For testing purposes I organized them into 7 functions: > > ListDim1[v_]:=If[Head[v]===List,1+Max[Map[ListDim1,v],0],0]; (* Don > Taylor *) > ListDim2[lst_]:=Max[Length/@Position[lst,List]]; (* János *) > ListDim3[expr_]:=Max[Length/@Position[{expr},{___}]]; (* David Park *) > ListDim4[l_]:=Depth[DeleteCases[l,_?(!ListQ[#1]&)]]-1; (* Jean-Marc > Gulliet *) > ListDim5[e_]:=Max[Length/@Position[e,List]]; (* Carl Woll *) > ListDim6[list_List]:=Depth[list/.x_List/;(!MemberQ[x,{___}])->{}]-1;ListDim6[_]=0; > (* dh *) > ListDim7[expr_]:=Depth[0*expr]-1; (* Andrzej Kozlowski *) > > (I excluded a solution by Adriano Pascoletti, who uses 2 functions) > Here is a quick test: > > ListDimTest[e_]:={ListDim1[e],ListDim2[e],ListDim3[e],ListDim4[e],ListDim5[e], > ListDim6[e],ListDim7[e]}; > > t={1,Null,{},{1,2,3,4},{"s"+1},{{},{},{}}, {Infinity,Indefinite,{}}, > {1,{{{{{{x,y*z}}}}}},{6}}, {{{{Sqrt[1+x*y]}}}}, > {1,{2,Null+5,3},{{{4,Infinity,-4}}}}, > {0,{1,{2,{3^{1,2,3}}}}}, {c*{{1,2},{3+{x,y},4}}} } ; > Print[Table[ListDimTest[t[[i]]],{i,1,Length[t]}]//TableForm]; > > and the results are > > Infinity::indet: Indeterminate expression 0 Infinity encountered. > > Infinity::indet: Indeterminate expression 0 Infinity encountered. > > 0 -Infinity 0 0 -Infinity 0 0 > 0 -Infinity 0 0 -Infinity 0 0 > 1 1 1 1 1 1 1 > 1 1 1 1 1 1 1 > 1 1 1 1 1 1 1 > 2 2 2 2 2 2 2 > 2 2 2 2 2 2 2 > 7 7 7 8 7 7 7 > 4 4 4 7 4 4 4 > 4 4 4 5 4 4 4 > 5 5 5 5 5 5 5 > 4 4 4 6 4 4 4 > > Summary: #1, #3, #6 and #7 returned the correct value across the > board. However #7 produced a warning message when an entry > contained Infinity due to the 0*Infinite operation. It seems that the > most compact solution that works, and produces no messages, is #3. > Congratulations to David. > > BTW I found surprising that this is not provided as built-in function, > since it is such a basic operation in list preprocessing. > Hi Carlos, Just for the record, I have fixed my function (I had forgotten to set the third argument of DeleteCases to Infinity so the function analyzed only the first level of the structure.) ListDim4[l_] := Depth[DeleteCases[l, _?(! ListQ[#1] &), Infinity]] - 1; Regards, Jean-Marc