       Re: Derivative recurrence

• To: mathgroup at smc.vnet.net
• Subject: [mg72711] Re: Derivative recurrence
• From: "dimitris" <dimmechan at yahoo.com>
• Date: Tue, 16 Jan 2007 02:59:32 -0500 (EST)
• References: <eofikq\$gc1\$1@smc.vnet.net>

```Here is one quick attempt; certainly not the best but it does the job!

First define the components of your displacement field as follows

u[x, x, x, t] := x*f[x, x, t]
u[x, x, x, t] := x*f[x, x, t]
u[x, x, x, t] := x*f[x, x, t]

Two things to notice here:
First, within Mathematica Arguments to functions are wrapped with
square brackets.
Second I strongly suggest you using the setting u[j][...] instead of
the very difficult in manipulation uj[...].

Now define the components of the Strain Tensor as follows

e[i_][j_] := (1/2)*(D[u[i][x, x, x, t], x[j]] + D[u[j][x,
x, x, t], x[i]])

Here is the strain tensor for your problem

Table[e[i][j], {i, 1, 3}, {j, 1, 3}]
{{x*Derivative[1, 0, 0][f][x, x, t],
(1/2)*(x*Derivative[0, 1, 0][f][x, x, t] +
x*Derivative[1, 0, 0][f][x, x, t]),
(1/2)*(f[x, x, t] + x*Derivative[1, 0, 0][f][x,
x, t])},
{(1/2)*(x*Derivative[0, 1, 0][f][x, x, t] +
x*Derivative[1, 0, 0][f][x, x, t]),
x*Derivative[0, 1, 0][f][x, x, t], (1/2)*(f[x,
x, t] + x*Derivative[0, 1, 0][f][x, x, t])},
{(1/2)*(f[x, x, t] + x*Derivative[1, 0, 0][f][x,
x, t]),
(1/2)*(f[x, x, t] + x*Derivative[0, 1, 0][f][x,
x, t]), f[x, x, t]}}

If you want to get your results in terms of "xyz" notation and in nice
tableformat, then you could use the following command

(TableForm[#1, TableHeadings -> {Automatic, Automatic}] & )[% /. {x
-> x, x -> y, x -> z}]

Let for practise determine the commands of the stress tensor. Although
I do not know the stress-strain relation that your material obbeys, I
suppose linear, elastic behavior; that is the stress-strain relation is
the generalized Hooke's Law (Love 1944).

Here is the components of Strain Tensor

Ï?[i_][j_] := Î»*KroneckerDelta[i, j]*Sum[e[k][k], {k, 1, 3}] +
2*Î¼*e[i][j]

and here is the stress tensor for your problem

Table[Ï?[i][j], {i, 1, 3}, {j, 1, 3}]
{{2*Î¼*x*Derivative[1, 0, 0][f][x, x, t] +
Î»*(f[x, x, t] + x*Derivative[0, 1, 0][f][x,
x, t] + x*Derivative[1, 0, 0][f][x, x, t]),
Î¼*(x*Derivative[0, 1, 0][f][x, x, t] +
x*Derivative[1, 0, 0][f][x, x, t]),
Î¼*(f[x, x, t] + x*Derivative[1, 0, 0][f][x, x,
t])},
{Î¼*(x*Derivative[0, 1, 0][f][x, x, t] +
x*Derivative[1, 0, 0][f][x, x, t]),
2*Î¼*x*Derivative[0, 1, 0][f][x, x, t] +
Î»*(f[x, x, t] + x*Derivative[0, 1, 0][f][x,
x, t] + x*Derivative[1, 0, 0][f][x, x, t]),
Î¼*(f[x, x, t] + x*Derivative[0, 1, 0][f][x, x,
t])},
{Î¼*(f[x, x, t] + x*Derivative[1, 0, 0][f][x, x,
t]),
Î¼*(f[x, x, t] + x*Derivative[0, 1, 0][f][x, x,
t]),
2*Î¼*f[x, x, t] + Î»*(f[x, x, t] +
x*Derivative[0, 1, 0][f][x, x, t] +
x*Derivative[1, 0, 0][f][x, x, t])}}

Or

(TableForm[#1, TableHeadings -> {Automatic, Automatic}] & )[% /. {x
-> x, x -> y, x -> z}]

Regards
Dimitris

KFUPM wrote:
> Dear All
>
> I have the following
>
> u1(x,x,z,t) = z f1(x,y,t)
> u2(x,y,z,t) = z f2(x,y,t)
> u3(x,y,z,t) = z f3(x,y,t)
>
> which is basically the displacement fied. I want to compute the strain
> which is given in indecial notation as:
>
> Eij = 1/2( dui/dxj + duj/dxj ) where i, j, k go from 1 to 3,,, x1=x, x2
> =y, x3=z,
>
> I want mathematica to calculate the strain Eij autmoatically,
>
> for example
>
> when i = 1 and j= 2
>
> E12 =1/2 (du1/dx2+du2/dx1 )     but x1 =x and x2 =y
>
> therefore
>
> E12 =1/2 (du1/dy + du2/dx) = 1/2 ( z df1/dx + z df2/dy),,,   where f1,
> f2 and f3 are arbitrary functions.
>
> Eij should generate 3 by 3 matrix containing the strain components.
> Frankly, i don't know how to do it using mathematica and i would
> appreciate any help in this regard.
>
>
> Thanks in anticipation

```

• Prev by Date: Re: Directory ? Not the current working one !
• Next by Date: Re: On Mathematica notebook options
• Previous by thread: Re: Derivative recurrence
• Next by thread: Re: Derivative recurrence