integration
- To: mathgroup at smc.vnet.net
- Subject: [mg72738] integration
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Wed, 17 Jan 2007 06:40:43 -0500 (EST)
Hello. Consider the following divergent integral Block[{Message}, Integrate[Cos[x]/x, {x, 0, Infinity}]] Infinity There is a non-integrable singularity at x=0 Series[Cos[x]/x, {x, 0, 3}] SeriesData[x, 0, {1, 0, -1/2, 0, 1/24}, -1, 4, 1] In the Hadamard sense the integral converges to -EulerGamma. Indeed Integrate[Cos[x]/x, {x, 0, Infinity}, GenerateConditions -> False] -EulerGamma or Integrate[Cos[x]/x, {x, e, Infinity}, Assumptions -> e > 0] (Series[#1, {e, 0, 3}] & )[%] (DeleteCases[#1, (a_)*Log[e], Infinity] & )[%] (Limit[#1, e -> 0, Direction -> -1] & )[%] -CosIntegral[e] SeriesData[e, 0, {-EulerGamma - Log[e], 0, 1/4}, 0, 4, 1] SeriesData[e, 0, {-EulerGamma, 0, 1/4}, 0, 4, 1] -EulerGamma Next, consider the function f = x^4/(1 + Exp[-x]); The integral does not exist in the Riemann sense. One way to get the Hadamard finite part is by directly removing the divergent term Integrate[f - x^4, {x, 0, Infinity}] N[%] NIntegrate[f - x^4, {x, 0, Infinity}] -((45*Zeta[5])/2) -23.33087449072582 -23.330874489932825 So, I wonder if there is any possibility settings like below to ever work? Integrate[Cos[x]/x - 1/x, {x, 0, Infinity}] NIntegrate[Cos[x]/x - 1/x, {x, 0, Infinity}] Any ideas? Thanks! Dimitris
- Follow-Ups:
- Re: integration
- From: Daniel Lichtblau <danl@wolfram.com>
- Re: integration