Re: Re: Solving a Integral
- To: mathgroup at smc.vnet.net
- Subject: [mg78450] Re: [mg78389] Re: Solving a Integral
- From: DrMajorBob <drmajorbob at bigfoot.com>
- Date: Mon, 2 Jul 2007 06:47:14 -0400 (EDT)
- References: <f5dkds$no$1@smc.vnet.net> <f5qi0d$49f$1@smc.vnet.net> <13143474.1183201922172.JavaMail.root@m35>
- Reply-to: drmajorbob at bigfoot.com
FWIW, here's a more drawn-out thought process for Maxim's derivation: The problem is constant Integrate[integrand, {x, 0, Infinity}] where constant = beta^-alpha/Gamma[alpha]; integrand = \[ExponentialE]^-x/beta /(1 + \[ExponentialE]^(-b - a x)) x^(-1 + alpha); The integrand divides into a power of x and a part that looks sort of geometric: almostGeometric = Take[integrand, 2] power = Last@integrand \[ExponentialE]^-x/beta/(1 + \[ExponentialE]^(-b - a x)) x^(-1 + alpha) and the geometric part we need is geometric = almostGeometric/\[ExponentialE]^(b + a x - x/beta) \[ExponentialE]^(-b - a x)/(1 + \[ExponentialE]^(-b - a x)) Just checking our memory: Normal@Series[z/(1 + z), {z, 0, 10}] z - z^2 + z^3 - z^4 + z^5 - z^6 + z^7 - z^8 + z^9 - z^10 The substitution rule, the summand, and the sum are: rule = z -> \[ExponentialE]^(-b - a x); summand[n_] = (-1)^n z^(n + 1); sum=Sum[summand[n], {n, 0, Infinity}] z/(1 + z) So the integrand is integrand == second almostGeometric/geometric (sum /. rule) True Integrating the nth term (including the constant out front), we get: int[n_] = Assuming[{alpha > 0, beta > 0, a > 0, b < 0, n >= 0}, Integrate[ constant second almostGeometric/ geometric (summand[n] /. rule), {x, 0, \[Infinity]}]] (-1)^n \[ExponentialE]^(-b n) (1 + a beta n)^-alpha and the sum of these is Sum[int[n], {n, 0, Infinity}] LerchPhi[-E^(-b), alpha, 1/(a*beta)]/(a*beta)^alpha I couldn't get the INDEFINITE integral this way, BTW. Bobby On Sat, 30 Jun 2007 05:03:37 -0500, dimitris <dimmechan at yahoo.com> wrote : > > m... at inbox.ru : >> On Jun 21, 5:37 am, ehrnsperge... at pg.com wrote: >> > I need help in solving the following integral: >> > >> > Integral = 1/(beta^alpha* Gamma[alpha]) * >> > Integrate[x^(alpha-1)*Exp[-x/beta]/(1+Exp[-a*x-b]),{x,0, infinity}, >> > Assumptions: (alpha> 0)||(beta > 0)||(a > 0)||(b <0)] >> > >> > The Integral is approximately 1/(beta^alpha* Gamma[alpha]) >> > *1/(1+Exp[-a*alpha*beta-b]) + Order[alpha*beta^2] >> > >> > However, I would like to have an exact analytical solution, and I am >> > failing to convince Mathematica to give me the solution. Is there a >> way to >> > ask Mathematica to give the solution as a series expansion of my >> > approximate solution? >> > >> > Thanks so much for your help, >> > >> > Bruno >> > >> > Dr. Bruno Ehrnsperger >> > Principal Scientist >> > >> > Procter & Gamble Service GmbH >> > Sulzbacherstr.40 >> > 65824 Schwalbach >> > Germany >> > >> > fon +49-6196-89-4412 >> > fax +49-6196-89-22965 >> > e-mail: ehrnsperge... at pg.com >> > internet:www.pg.com >> > >> > Gesch=E4ftsf=FChrer: Otmar W. Debald, Gerhard Ritter, Dr. Klaus >> Schumann, >> > Willi Schwerdtle >> > Sitz: Sulzbacher Str. 40, 65824 Schwalbach am Taunus, Amtsgericht: >> > K=F6nigstein im Taunus HRB 4990 >> >> Expand the integrand into a series of exponents: >> >> In[1]:= 1/(beta^alpha Gamma[alpha]) x^(alpha - 1) E^(-x/beta)/ >> (1 + E^(-a x - b)) == >> 1/(beta^alpha Gamma[alpha]) Sum[ >> (-1)^k x^(alpha - 1) E^((-a k - 1/beta) x - b k), >> {k, 0, Infinity}] // Simplify >> >> Out[1]= True >> >> In[2]:= Assuming[{alpha > 0, beta > 0, a > 0, k >= 0}, >> Integrate[(-1)^k x^(alpha - 1) E^((-a k - 1/beta) x - b k), >> {x, 0, Infinity}]] >> >> Out[2]= (-1)^k E^(-b k) (beta/(1 + a beta k))^alpha Gamma[alpha] >> >> In[3]:= 1/(beta^alpha Gamma[alpha]) Sum[ >> % /. (x_/y_)^p_ :> (1/Expand[y/x])^p, {k, 0, Infinity}] >> >> Out[3]= a^-alpha beta^-alpha LerchPhi[-E^-b, alpha, 1/(a beta)] >> >> Maxim Rytin >> m.r at inbox.ru > > Amazing solution! > Mind (more...) + Mathematica (less...) triumph! > > Dimitris > > > -- DrMajorBob at bigfoot.com