Re: Re: limit
- To: mathgroup at smc.vnet.net
- Subject: [mg78621] Re: [mg78545] Re: limit
- From: DrMajorBob <drmajorbob at bigfoot.com>
- Date: Thu, 5 Jul 2007 04:12:48 -0400 (EDT)
- References: <f6d9si$2l5$1@smc.vnet.net> <19518154.1183545117387.JavaMail.root@m35>
- Reply-to: drmajorbob at bigfoot.com
That seems plausible, of course, but numerical results contradict it, both for the original expression and the denominator derivative. Start by taking apart the OP's expression: Clear[expr, noProblem, zero, infinite] expr[s_] = -((2^(-2 + s)*Cos[(1/4)*Pi*(1 + s)]*Gamma[(1 + s)/4]^2* Gamma[(1 + s)/2]* HypergeometricPFQ[{1/4 + s/4, 1/4 + s/4, 1/4 + s/4, 3/4 + s/4}, {1/2, 1, 1}, 1])/Pi); List @@ % /. s -> 1 {-1, 1/2, 1/\[Pi], 0, \[Pi], 1, \[Infinity]} noProblem[s_] = expr[s][[{1, 2, 3, 5, 6}]] zero[s_] = expr[s][[4]] infinite[s_] = expr[s][[-1]] -(2^(-2 + s) Gamma[(1 + s)/4]^2 Gamma[(1 + s)/2])/\[Pi] Cos[1/4 \[Pi] (1 + s)] HypergeometricPFQ[{1/4 + s/4, 1/4 + s/4, 1/4 + s/4, 3/4 + s/4}, {1/2, 1, 1}, 1] Here's essentially the same result you have: D[zero[s], s] /. s -> 1 D[1/infinite[s], s] /. s -> 1 -\[Pi]/4 0 But the latter derivative is clearly wrong (probably due to some simplification rule, applied without our knowledge, that isn't correct at s=1): Clear[dy, infInverse] dy[f_, dx_, digits_] := N[(f[1 - dx] - f[1 - 2 dx])/dx, digits] infInverse[s_] = 1/infinite[s]; Table[dy[infInverse, 10^-k, 25], {k, 1, 10}] {-1.923427116516395532881478, -2.983463609047004067632190, \ -3.125313973445201143419500, -3.139959997528752908922902, \ -3.141429339969442289280062, -3.141576321747481534963308, \ -3.141591020400759167851555, -3.141592490270841802264744, \ -3.141592637257897614551351, -3.141592651956603671268599} Table[Pi + dy[infInverse, 10^-k, 30], {k, 10, 20}] {1.63318956719404435692*10^-9, 1.6331895676743358738*10^-10, 1.633189567722365025*10^-11, 1.63318956772716794*10^-12, 1.6331895677276482*10^-13, 1.633189567727696*10^-14, 1.63318956772770*10^-15, 1.6331895677277*10^-16, 1.633189567728*10^-17, 1.63318956773*10^-18, 1.6331895677*10^-19} So the denominator limit is (almost certainly) -Pi, and the original limit is noProblem[1] D[zero[s], s]/-Pi /. s -> 1 % // N -1/8 -0.125 which agrees perfectly with the OP's calculations and with these: Table[N[1/8 + expr[1 - 10^-k], 20], {k, 1, 10}] {-0.031802368727291105600, -0.0029147499047748859136, \ -0.00028902994360074334672, -0.000028878738171604118632, \ -2.8876314481087565099*10^-6, -2.8876072131304841863*10^-7, \ -2.8876047896519244498*10^-8, -2.8876045473042611497*10^-9, \ -2.8876045230694967464*10^-10, -2.8876045206460203254*10^-11} I don't know how to prove the result symbolically, however. Bobby On Wed, 04 Jul 2007 04:28:36 -0500, dh <dh at metrohm.ch> wrote > > > Hi Dimitris, > > I think the limit is -Infinity. > > consider the following trick : > > f1=2^(-2+s)*Cos[(1/4)*Pi*(1+s)]*Gamma[(1+s)/4]^2*Gamma[(1+s)/2] > > f2= 1/HypergeometricPFQ[{1/4 + s/4, 1/4 + s/4, 1/4 + s/4, 3/4 + s/4}, > > {1/2, 1, 1}, 1] > > then we are interessted in the limit of f1/f2. As both these expressions > > are 0 for s=1, we can take the quotient of the drivatives: > > D[f1,s]=-\[Pi]^2/8 > > D[f2,s]= 0 > > therefore we get -Infinity > > hope this helps, Daniel > > > > > > dimitris wrote: > >> Hello. > >> > >> Say > >> > >> In[88]:= > >> o = -((2^(-2 + s)*Cos[(1/4)*Pi*(1 + s)]*Gamma[(1 + s)/4]^2*Gamma[(1 + > >> s)/2]* > >> HypergeometricPFQ[{1/4 + s/4, 1/4 + s/4, 1/4 + s/4, 3/4 + s/4}, > >> {1/2, 1, 1}, 1])/Pi); > >> > >> I am interested in the value at (or as s->) 1. > >> > >> I think there must exist this value (or limit) at s=1. > >> > >> In[89]:= > >> (N[#1, 20] & )[(o /. s -> 1 - #1 & ) /@ Table[10^(-n), {n, 3, 10}]] > >> > >> Out[89]= > >> {-0.12528902994360074335,-0.12502887873817160412,-0.12500288763144810876,-0.\ > >> 12500028876072131305,-0.12500002887604789652,-0.12500000288760454730, -0.\ > >> 12500000028876045231,-0.12500000002887604521} > >> > >> However both > >> o/.s->1 > >> and > >> Limit[o,s->1,Direction->1 (*or -1*)] > >> does not produce anything. > >> > >> Note also that > >> > >> In[93]:= > >> 2^(-2 + s)*Cos[(1/4)*Pi*(1 + s)]*Gamma[(1 + s)/4]^2*Gamma[(1 + s)/ > >> 2] /. s -> 1 > >> HypergeometricPFQ[{1/4 + s/4, 1/4 + s/4, 1/4 + s/4, 3/4 + s/4}, {1/2, > >> 1, 1}, 1] /. s -> 1 > >> > >> Out[93]= > >> 0 > >> > >> Out[94]= > >> Infinity > >> > >> So am I right and the limit exist (if yes please show me a way to > >> evaluate it) or not > >> (in this case explain me why; in either case be kind if I miss > >> something fundamental!) > >> > >> Thanks > >> Dimitris > >> > >> > > > > -- DrMajorBob at bigfoot.com