Re: limit
- To: mathgroup at smc.vnet.net
- Subject: [mg78652] Re: limit
- From: sashap <pavlyk at gmail.com>
- Date: Fri, 6 Jul 2007 03:23:16 -0400 (EDT)
- References: <f6d9si$2l5$1@smc.vnet.net>
Hi, I actually found a way to symbolically prove the result. One has to use different recurrence equation with respect to lower integer parameter: In[189]:= Clear[q, r, RecEq]; In[190]:= r[e_] = -2^(-1 - 4 e) Gamma[ 1 - 2 e] Gamma[1/2 - e]^2 HypergeometricPFQ[{1/2 - e, 1/2 - e, 1/2 - e, 1 - e}, {1/2, 1, 1}, 1] Sin[e Pi]/Pi; In[191]:= RecEq = 15/ 2 e HypergeometricPFQ[{1/2 - e, 1/2 - e, 1/2 - e, 1 - e}, {1/2, 1, 1}, 1] - 45/16 (3 + 14 e + 8 e^2) HypergeometricPFQ[{1/2 - e, 1/2 - e, 1/2 - e, 1 - e}, {1, 1, 3/2}, 1] + 5/16 (65 + 188 e + 132 e^2 + 32 e^3) HypergeometricPFQ[{1/2 - e, 1/2 - e, 1/2 - e, 1 - e}, {1, 1, 5/2}, 1] - 1/2 (2 + e)^3 (3 + 2 e) HypergeometricPFQ[{1/2 - e, 1/2 - e, 1/2 - e, 1 - e}, {1, 1, 7/2}, 1]; In[192]:= RecEq = 24 e HypergeometricPFQ[{1/2 - e, 1/2 - e, 1/2 - e, 1 - e}, {1/ 2, 1, 1}, 1] + 1/4 (-90 - 396 e - 144 e^2) HypergeometricPFQ[{1/2 - e, 1/2 - e, 1/2 - e, 1 - e}, {1/2, 1, 2}, 1] + 1/8 (429 + 1032 e + 540 e^2 + 96 e^3) HypergeometricPFQ[{1/2 - e, 1/2 - e, 1/2 - e, 1 - e}, {1/2, 1, 3}, 1] - 1/8 (2 + e) (5 + 2 e)^3 HypergeometricPFQ[{1/2 - e, 1/2 - e, 1/2 - e, 1 - e}, {1/2, 1, 4}, 1]; In[193]:= RecEq /. e -> 1`15*^-5 Out[193]= 0.*10^-15 In[194]:= q[e_] = r[e] /. First[Solve[RecEq == 0, HypergeometricPFQ[{1/2 - e, 1/2 - e, 1/2 - e, 1 - e}, {1/2, 1, 1}, 1]]] Out[194]= -(1/(3 e \[Pi])) 2^(-4 - 4 e) Gamma[1 - 2 e] Gamma[ 1/2 - e]^2 (-(1/ 4) (-90 - 396 e - 144 e^2) HypergeometricPFQ[{1/2 - e, 1/2 - e, 1/2 - e, 1 - e}, {1/2, 1, 2}, 1] - 1/8 (429 + 1032 e + 540 e^2 + 96 e^3) HypergeometricPFQ[{1/2 - e, 1/2 - e, 1/2 - e, 1 - e}, {1/2, 1, 3}, 1] + 1/8 (2 + e) (5 + 2 e)^3 HypergeometricPFQ[{1/2 - e, 1/2 - e, 1/2 - e, 1 - e}, {1/2, 1, 4}, 1]) Sin[e \[Pi]] In[195]:= Collect[q[e], _HypergeometricPFQ, Limit[#, e -> 0, Direction -> -1] &] /. e -> 0 Out[195]= -(1/8) Oleksandr Pavlyk Special Functions Developer Wolfram Research Inc. On Jul 5, 3:34 am, DrMajorBob <drmajor... at bigfoot.com> wrote: > That seems plausible, of course, but numerical results contradict it, both > for the original expression and the denominator derivative. > > Start by taking apart the OP's expression: > > Clear[expr, noProblem, zero, infinite] > expr[s_] = -((2^(-2 + s)*Cos[(1/4)*Pi*(1 + s)]*Gamma[(1 + s)/4]^2* > Gamma[(1 + > s)/2]* > HypergeometricPFQ[{1/4 + s/4, 1/4 + s/4, 1/4 + s/4, > 3/4 + s/4}, > {1/2, 1, 1}, 1])/Pi); > List @@ % /. s -> 1 > > {-1, 1/2, 1/\[Pi], 0, \[Pi], 1, \[Infinity]} > > noProblem[s_] = expr[s][[{1, 2, 3, 5, 6}]] > zero[s_] = expr[s][[4]] > infinite[s_] = expr[s][[-1]] > > -(2^(-2 + s) Gamma[(1 + s)/4]^2 Gamma[(1 + s)/2])/\[Pi] > > Cos[1/4 \[Pi] (1 + s)] > > HypergeometricPFQ[{1/4 + s/4, 1/4 + s/4, 1/4 + s/4, 3/4 + s/4}, {1/2, > 1, 1}, 1] > > Here's essentially the same result you have: > > D[zero[s], s] /. s -> 1 > D[1/infinite[s], s] /. s -> 1 > > -\[Pi]/4 > 0 > > But the latter derivative is clearly wrong (probably due to some > simplification rule, applied without our knowledge, that isn't correct at > s=1): > > Clear[dy, infInverse] > dy[f_, dx_, digits_] := N[(f[1 - dx] - f[1 - 2 dx])/dx, digits] > infInverse[s_] = 1/infinite[s]; > > Table[dy[infInverse, 10^-k, 25], {k, 1, 10}] > > {-1.923427116516395532881478, -2.983463609047004067632190, \ > -3.125313973445201143419500, -3.139959997528752908922902, \ > -3.141429339969442289280062, -3.141576321747481534963308, \ > -3.141591020400759167851555, -3.141592490270841802264744, \ > -3.141592637257897614551351, -3.141592651956603671268599} > > Table[Pi + dy[infInverse, 10^-k, 30], {k, 10, 20}] > > {1.63318956719404435692*10^-9, 1.6331895676743358738*10^-10, > 1.633189567722365025*10^-11, 1.63318956772716794*10^-12, > 1.6331895677276482*10^-13, 1.633189567727696*10^-14, > 1.63318956772770*10^-15, 1.6331895677277*10^-16, > 1.633189567728*10^-17, 1.63318956773*10^-18, 1.6331895677*10^-19} > > So the denominator limit is (almost certainly) -Pi, and the original limit > is > > noProblem[1] D[zero[s], s]/-Pi /. s -> 1 > % // N > > -1/8 > -0.125 > > which agrees perfectly with the OP's calculations and with these: > > Table[N[1/8 + expr[1 - 10^-k], 20], {k, 1, 10}] > > {-0.031802368727291105600, -0.0029147499047748859136, \ > -0.00028902994360074334672, -0.000028878738171604118632, \ > -2.8876314481087565099*10^-6, -2.8876072131304841863*10^-7, \ > -2.8876047896519244498*10^-8, -2.8876045473042611497*10^-9, \ > -2.8876045230694967464*10^-10, -2.8876045206460203254*10^-11} > > I don't know how to prove the result symbolically, however. > > Bobby > > On Wed, 04 Jul 2007 04:28:36 -0500, dh <d... at metrohm.ch> wrote > > > > > > > Hi Dimitris, > > > I think the limit is -Infinity. > > > consider the following trick : > > > f1=2^(-2+s)*Cos[(1/4)*Pi*(1+s)]*Gamma[(1+s)/4]^2*Gamma[(1+s)/2] > > > f2= 1/HypergeometricPFQ[{1/4 + s/4, 1/4 + s/4, 1/4 + s/4, 3/4 + s/4}, > > > {1/2, 1, 1}, 1] > > > then we are interessted in the limit of f1/f2. As both these expressions > > > are 0 for s=1, we can take the quotient of the drivatives: > > > D[f1,s]=-\[Pi]^2/8 > > > D[f2,s]= 0 > > > therefore we get -Infinity > > > hope this helps, Daniel > > > dimitris wrote: > > >> Hello. > > >> Say > > >> In[88]:= > > >> o = -((2^(-2 + s)*Cos[(1/4)*Pi*(1 + s)]*Gamma[(1 + s)/4]^2*Gamma[(1 + > > >> s)/2]* > > >> HypergeometricPFQ[{1/4 + s/4, 1/4 + s/4, 1/4 + s/4, 3/4 + s/4}, > > >> {1/2, 1, 1}, 1])/Pi); > > >> I am interested in the value at (or as s->) 1. > > >> I think there must exist this value (or limit) at s=1. > > >> In[89]:= > > >> (N[#1, 20] & )[(o /. s -> 1 - #1 & ) /@ Table[10^(-n), {n, 3, 10}]] > > >> Out[89]= > > >> {-0.12528902994360074335,-0.12502887873817160412,-0.12500288763144810876,-0.\ > > >> 12500028876072131305,-0.12500002887604789652,-0.12500000288760454730, -0.\ > > >> 12500000028876045231,-0.12500000002887604521} > > >> However both > > >> o/.s->1 > > >> and > > >> Limit[o,s->1,Direction->1 (*or -1*)] > > >> does not produce anything. > > >> Note also that > > >> In[93]:= > > >> 2^(-2 + s)*Cos[(1/4)*Pi*(1 + s)]*Gamma[(1 + s)/4]^2*Gamma[(1 + s)/ > > >> 2] /. s -> 1 > > >> HypergeometricPFQ[{1/4 + s/4, 1/4 + s/4, 1/4 + s/4, 3/4 + s/4}, {1/2, > > >> 1, 1}, 1] /. s -> 1 > > >> Out[93]= > > >> 0 > > >> Out[94]= > > >> Infinity > > >> So am I right and the limit exist (if yes please show me a way to > > >> evaluate it) or not > > >> (in this case explain me why; in either case be kind if I miss > > >> something fundamental!) > > >> Thanks > > >> Dimitris > > -- > > DrMajor... at bigfoot.com