Re: Locator question
- To: mathgroup at smc.vnet.net
- Subject: [mg79292] Re: [mg79272] Locator question
- From: DrMajorBob <drmajorbob at bigfoot.com>
- Date: Tue, 24 Jul 2007 05:56:20 -0400 (EDT)
- References: <2851721.1185180232088.JavaMail.root@m35>
- Reply-to: drmajorbob at bigfoot.com
How's this? Manipulate[ Show[ Plot[g[x], {x, 0, 2 \[Pi]}], p[[2]] = g@p[[1]]; slope = D[g[x], x] /. x -> p[[1]]; Plot[p[[2]] + slope (x - p[[1]]), {x, 0, 2 \[Pi]}], PlotLabel -> Style["slope of f(x)= " <> ToString[NumberForm[slope, {6, 4}]]]], {{g, Sin, "function"}, {Sin -> TraditionalForm[Sin[x]], Cos -> TraditionalForm[Cos[x]], #^2 & -> TraditionalForm[x^2]}, ControlType -> PopupMenu}, {{p, {0, 0}}, Locator}] Bobby On Mon, 23 Jul 2007 02:40:52 -0500, Mike <mjp.1 at comcast.net> wrote: > All, > > I'm trying to get the locator to track a point along a given curve: > > > bothfandtan[g_, p_] := > Module[{f = g, > eqline = (D[g, x] /. x -> p[[1]]) (x - p[[1]]) + p[[2]]}, > Show[{Plot[f, {x, 0, 2 \[Pi]}], Plot[eqline, {x, 0, 2 \[Pi]}]}]] > > Manipulate[ > Show[bothfandtan[g, p], > PlotLabel -> > Style["slope of f(x)= " <> > ToString[NumberForm[D[g, x] /. x -> p[[1]], {6, 4}]]]], > {{g, Sin[x], "function"}, > {Sin[x] -> TraditionalForm[Sin[x]], > Cos[x] -> TraditionalForm[Cos[x]], > x^2 -> TraditionalForm[x^2]}}, {{p, {0, 0}}, Locator}, > SaveDefinitions -> True] > > > I've tried a number of possibilities, but I can't seem to get this to > work. Mathematica's help section on this isn't very helpful. > > Thanks for the help... > > Mike > > -- DrMajorBob at bigfoot.com
- Follow-Ups:
- Re: Re: Locator question
- From: Murray Eisenberg <murray@math.umass.edu>
- Re: Re: Locator question