Re: Help with Root function
- To: mathgroup at smc.vnet.net
- Subject: [mg79444] Re: Help with Root function
- From: dimitris <dimmechan at yahoo.com>
- Date: Fri, 27 Jul 2007 05:43:59 -0400 (EDT)
- References: <f89q55$5nu$1@smc.vnet.net>
On 26 , 12:39, jeremito <jerem... at gmail.com> wrote: > I am trying to find the eigenvalues of a 3x3 matrix with non-numeric > elements. This requires finding the roots of cubic polynomials. > Mathematica can do this, but I know how to interpret its output. For > example > > In[1]:= B = {{a, 1, 1}, {1, b, 1}, {1, 1, c}} > > Out[1]= {{a, 1, 1}, {1, b, 1}, {1, 1, c}} > > In[2]:= Eigenvalues[B] > > Out[2]= {Root[-2 + a + b + c - > a b c + (-3 + a b + a c + b c) #1 + (-a - b - c) #1^2 + #1^3 &, > 1], Root[-2 + a + b + c - > a b c + (-3 + a b + a c + b c) #1 + (-a - b - c) #1^2 + #1^3 &, > 2], Root[-2 + a + b + c - > a b c + (-3 + a b + a c + b c) #1 + (-a - b - c) #1^2 + #1^3 &, > 3]} > > How can I get Mathematica to give me the full answer? I know it is > long and ugly, but at least I can do something with it. I can't do > anything with what it gives me now. Does that make sense? > Thanks, > Jeremy What do you mean "you can't do nothing?" Root objects are fully manipulated. See the help broswer for more information. In[119]:= B={{a,1,1},{1,b,1},{1,1,c}} Out[119]= {{a,1,1},{1,b,1},{1,1,c}} In[122]:= eigs=Eigenvalues[B] Out[122]= {Root[-2 + a + b + c - a*b*c - 3*#1 + a*b*#1 + a*c*#1 + b*c*#1 - a*#1^2 - b*#1^2 - c*#1^2 + #1^3 & , 1], Root[-2 + a + b + c - a*b*c - 3*#1 + a*b*#1 + a*c*#1 + b*c*#1 - a*#1^2 - b*#1^2 - c*#1^2 + #1^3 & , 2], Root[-2 + a + b + c - a*b*c - 3*#1 + a*b*#1 + a*c*#1 + b*c*#1 - a*#1^2 - b*#1^2 - c*#1^2 + #1^3 & , 3]} In[136]:= Short[D[eigs[[1]], a]] Out[136]//Short= \!\(\* TagBox[\(\(\(-1\) + b\ c - b\ \[LeftSkeleton]1\[RightSkeleton] - c\ Root[\(-2\) + \[LeftSkeleton]16\[RightSkeleton] + #1\^3 &, 1] + \ Root[\(-2\) + \[LeftSkeleton]16\[RightSkeleton] + #1\^3 &, 1]\^2\)\/\(\ (-3\) \ + a\ b + \[LeftSkeleton]8\[RightSkeleton] + 3\ Root[\(-2\) + \ \[LeftSkeleton]16\[RightSkeleton] + \[LeftSkeleton]2\[RightSkeleton] \^3 &, 1]\ \^2\)\), Short]\) In[135]:= eigs /. Thread[{a, b, c} -> Table[Random[], {3}]] Out[135]= {-0.7503288305201328, -0.2706108411719136, 2.5383670207846087} As regards what you asked for In[138]:= ToRadicals[eigs] Out[138]= {(1/3)*(a + b + c) - (2^(1/3)*(-9 - a^2 + a*b - b^2 + a*c + b*c - c^2))/ (3*(54 + 2*a^3 - 3*a^2*b - 3*a*b^2 + 2*b^3 - 3*a^2*c + 12*a*b*c - 3*b^2*c - 3*a*c^2 - 3*b*c^2 + 2*c^3 + Sqrt[4*(-9 - a^2 + a*b - b^2 + a*c + b*c - c^2)^3 + (54 + 2*a^3 - 3*a^2*b - 3*a*b^2 + 2*b^3 - 3*a^2*c + 12*a*b*c - 3*b^2*c - 3*a*c^2 - 3*b*c^2 + 2*c^3)^2])^(1/3)) + (1/(3*2^(1/3)))*(54 + 2*a^3 - 3*a^2*b - 3*a*b^2 + 2*b^3 - 3*a^2*c + 12*a*b*c - 3*b^2*c - 3*a*c^2 - 3*b*c^2 + 2*c^3 + Sqrt[4*(-9 - a^2 + a*b - b^2 + a*c + b*c - c^2)^3 + (54 + 2*a^3 - 3*a^2*b - 3*a*b^2 + 2*b^3 - 3*a^2*c + 12*a*b*c - 3*b^2*c - 3*a*c^2 - 3*b*c^2 + 2*c^3)^2])^(1/3), (1/3)*(a + b + c) + ((1 + I*Sqrt[3])*(-9 - a^2 + a*b - b^2 + a*c + b*c - c^2))/ (3*2^(2/3)*(54 + 2*a^3 - 3*a^2*b - 3*a*b^2 + 2*b^3 - 3*a^2*c + 12*a*b*c - 3*b^2*c - 3*a*c^2 - 3*b*c^2 + 2*c^3 + Sqrt[4*(-9 - a^2 + a*b - b^2 + a*c + b*c - c^2)^3 + (54 + 2*a^3 - 3*a^2*b - 3*a*b^2 + 2*b^3 - 3*a^2*c + 12*a*b*c - 3*b^2*c - 3*a*c^2 - 3*b*c^2 + 2*c^3)^2])^(1/3)) - (1/(6*2^(1/3)))*((1 - I*Sqrt[3])*(54 + 2*a^3 - 3*a^2*b - 3*a*b^2 + 2*b^3 - 3*a^2*c + 12*a*b*c - 3*b^2*c - 3*a*c^2 - 3*b*c^2 + 2*c^3 + Sqrt[4*(-9 - a^2 + a*b - b^2 + a*c + b*c - c^2)^3 + (54 + 2*a^3 - 3*a^2*b - 3*a*b^2 + 2*b^3 - 3*a^2*c + 12*a*b*c - 3*b^2*c - 3*a*c^2 - 3*b*c^2 + 2*c^3)^2])^(1/3)), (1/3)*(a + b + c) + ((1 - I*Sqrt[3])*(-9 - a^2 + a*b - b^2 + a*c + b*c - c^2))/ (3*2^(2/3)*(54 + 2*a^3 - 3*a^2*b - 3*a*b^2 + 2*b^3 - 3*a^2*c + 12*a*b*c - 3*b^2*c - 3*a*c^2 - 3*b*c^2 + 2*c^3 + Sqrt[4*(-9 - a^2 + a*b - b^2 + a*c + b*c - c^2)^3 + (54 + 2*a^3 - 3*a^2*b - 3*a*b^2 + 2*b^3 - 3*a^2*c + 12*a*b*c - 3*b^2*c - 3*a*c^2 - 3*b*c^2 + 2*c^3)^2])^(1/3)) - (1/(6*2^(1/3)))*((1 + I*Sqrt[3])*(54 + 2*a^3 - 3*a^2*b - 3*a*b^2 + 2*b^3 - 3*a^2*c + 12*a*b*c - 3*b^2*c - 3*a*c^2 - 3*b*c^2 + 2*c^3 + Sqrt[4*(-9 - a^2 + a*b - b^2 + a*c + b*c - c^2)^3 + (54 + 2*a^3 - 3*a^2*b - 3*a*b^2 + 2*b^3 - 3*a^2*c + 12*a*b*c - 3*b^2*c - 3*a*c^2 - 3*b*c^2 + 2*c^3)^2])^(1/3))} Regards Dimitris