Re: simplification of 0/0 to 1?
- To: mathgroup at smc.vnet.net
- Subject: [mg77605] Re: simplification of 0/0 to 1?
- From: dimitris <dimmechan at yahoo.com>
- Date: Wed, 13 Jun 2007 07:47:31 -0400 (EDT)
- References: <f4j11t$ksa$1@smc.vnet.net>
I have checked what two other CASs do in this simplification. The one returns the expression unevaluated the other returns ? which means undefined. I guess hidden zero will be a problem somewhere else for these CASs. Because also I want to be fair with our lovely Mathematica let me talk how this expression appeared. int(1-1/(sqrt(2)*(cos(Pi/12)-sin(Pi/12)))^z, z= 0..1); / Pi Pi Pi Pi |ln(2) cos(----) - ln(2) sin(----) - 2 cos(----) + 2 sin(----) \ 12 12 12 12 1/2 Pi Pi \ / / + 2 + 2 %1 cos(----) - 2 %1 sin(----)| / | 12 12 / / \ Pi Pi Pi ln(2) cos(----) - ln(2) sin(----) + 2 %1 cos(----) 12 12 12 Pi \ - 2 %1 sin(----)| 12 / Pi Pi %1 := ln(cos(----) - sin(----)) That is, another CAS returned a meshy expression (the expression I talked about in the first message) for this integral, while Mathematica (5.2) returns 0 which is the correct result. ->So, Integrate does the job good. ->Simplify faces a somehow inevitable problem but does the job better in more serious problems. I am happy with Mathematica!!! Dimitris / dimitris : > Hi fellas. > This appeared in another forum as part of a question > what another CAS does. > Just of curiosity I check Mathematica's performance (5.2). > The result was poor! > > Here is the expression > > > In[16]:= > o = (Log[2]*Cos[Pi/12] - Log[2]*Sin[Pi/12] - 2*Cos[Pi/12] + 2*Sin[Pi/ > 12] + Sqrt[2] + > 2*Log[Cos[Pi/12] - Sin[Pi/12]]*Cos[Pi/12] - 2*Log[Cos[Pi/12] - > Sin[Pi/12]]*Sin[Pi/12])/ > (Log[2]*Cos[Pi/12] - Log[2]*Sin[Pi/12] + 2*Log[Cos[Pi/12] - > Sin[Pi/ > 12]]*Cos[Pi/12] - > 2*Log[Cos[Pi/12] - Sin[Pi/12]]*Sin[Pi/12]) > > > Out[16]= > (Sqrt[2] + (-1 + Sqrt[3])/Sqrt[2] - (1 + Sqrt[3])/Sqrt[2] - ((-1 + > Sqrt[3])*Log[2])/(2*Sqrt[2]) + > ((1 + Sqrt[3])*Log[2])/(2*Sqrt[2]) - ((-1 + Sqrt[3])*Log[-((-1 + > Sqrt[3])/(2*Sqrt[2])) + (1 + Sqrt[3])/(2*Sqrt[2])])/ > Sqrt[2] + ((1 + Sqrt[3])*Log[-((-1 + Sqrt[3])/(2*Sqrt[2])) + (1 + > Sqrt[3])/(2*Sqrt[2])])/Sqrt[2])/ > (-(((-1 + Sqrt[3])*Log[2])/(2*Sqrt[2])) + ((1 + Sqrt[3])*Log[2])/ > (2*Sqrt[2]) - > ((-1 + Sqrt[3])*Log[-((-1 + Sqrt[3])/(2*Sqrt[2])) + (1 + Sqrt[3])/ > (2*Sqrt[2])])/Sqrt[2] + > ((1 + Sqrt[3])*Log[-((-1 + Sqrt[3])/(2*Sqrt[2])) + (1 + Sqrt[3])/ > (2*Sqrt[2])])/Sqrt[2]) > > Watch now a really bad performance! > > In[17]:= > (Simplify[#1[o]] & ) /@ {Numerator, Denominator} > > Out[17]= > {0, 0} > > That is Mathematica simplifies succesfully both the numerator > and denominator to zero. So, you wonder what goes wrong? > > Try now to simplify the whole expression! > > In[19]:= > Simplify[o] > > Out[19]= > 1 > > A very weird result to my opinion! > Simplification of 0/0 to 1? > I think no simplification or some > warning messages would be much better > than 1! > > Note also that > > In[20]:= > RootReduce[o] > > Out[20]= > 1 > > Dimitris