Re: Re: Indefinite Integral
- To: mathgroup at smc.vnet.net
- Subject: [mg77613] Re: [mg77558] Re: Indefinite Integral
- From: Daniel Lichtblau <danl at wolfram.com>
- Date: Thu, 14 Jun 2007 05:13:33 -0400 (EDT)
- References: <f4j0ij$j7n$1@smc.vnet.net> <200706131121.HAA06594@smc.vnet.net>
dimitris wrote: > Hello Joel. > > I use Mathematica 5.2 in the following. > > Here is the integrand. > > In[1]:= > int[a_, b_, p_, x_] := Exp[(-p)*x]*(Sin[x]/(a^2*Sin[x]^2 + > b^2*Cos[x]^2)^(3/2)) > > As you may notice (otherwise you would not have posted the query!) > Mathematica returns the indefinite integral unevaluated. > > Here are two subcases of the parameters that Mathematica > returns an antiderivative. > > In[17]:= > Integrate[int[a, a, p, x], x] > Out[17]= > -((Cos[x] + p*Sin[x])/(E^(p*x)*((a^2)^(3/2)*(1 + p^2)))) > > In[18]:= > Integrate[int[a, b, 0, x], x] > Out[18]= > -((Sqrt[2]*Cos[x])/(a^2*Sqrt[a^2 + b^2 + (-a^2 + b^2)*Cos[2*x]])) > > But I am sure you have also checked this. > > When Mathematica does not succeed, we should not give up > but trying to help it! > Here (I assume that you have consult the well known collection > of tables in literature; I didn't have time to search them for your > integral) I > tried various approaches as substitutions, integration by parts etc > but with > unsatisfactory results. > > For the end I left one approach which you should always have in mind > for parametric integrals like yours! > > This approach consists of the following steps: > > Take the indefinite integral with respect to a and b. > > In[27]:= > Int=Integrate[int[a, b, p, x], a, b] > Out[27]= > -((Sqrt[a^2 + b^2 + (-a^2 + b^2)*Cos[2*x]]*Csc[x]*Sec[x]^2)/ > (E^(p*x)*(Sqrt[2]*a*b))) > > (*Check*) > > In[34]:= > Simplify[D[%, a, b] == int[a, b, p, x]] > Out[34]= > True > > Now take the antiderivative of Int wrt x. > > In[95]:= > Integrate[Int, x] > > Out[95]= > -((1/(Sqrt[2]*a*b))*((Sqrt[a^2 + b^2 + (-a^2 + b^2)*Cos[2*x]]*Sec[x])/ > E^(p*x) + > (3*a^2 + b^2)*p*Integrate`TableMatchTrig1[((-(1/2))*I*Csc[2*x])/ > E^((-I + p)*x), x, 0] + > 4*b^2*Integrate`TableMatchTrig1[((1/2)*Csc[2*x])/E^((-I + p)*x), > x, 0] + > 3*a^2*p*Integrate`TableMatchTrig1[((1/2)*I*Csc[2*x])/E^((I + > p)*x), x, 0] + > b^2*p*Integrate`TableMatchTrig1[((1/2)*I*Csc[2*x])/E^((I + p)*x), > x, 0] + > 4*b^2*Integrate`TableMatchTrig1[((1/2)*Csc[2*x])/E^((I + p)*x), x, > 0] - > a^2*p*Integrate`TableMatchTrig1[((-(1/2))*I*Csc[2*x])/E^((-3*I + > p)*x), x, 0] + > b^2*p*Integrate`TableMatchTrig1[((-(1/2))*I*Csc[2*x])/E^((-3*I + > p)*x), x, 0] - > a^2*p*Integrate`TableMatchTrig1[((1/2)*I*Csc[2*x])/E^((3*I + > p)*x), x, 0] + > b^2*p*Integrate`TableMatchTrig1[((1/2)*I*Csc[2*x])/E^((3*I + > p)*x), x, 0])) > > Not exactly a readable result; but still a result! Umm, yeah. But pretty clearly a buggy result. > I am wondering what version 6 returns here! Mine returns the integral unevaluated. > Take now the derivatives wrt to a,b of the last expression and you > get > > In[135]:= > res=FullSimplify[D[%, a, b]] (*wait a couple of minutes for the > simplification!*) What you are doing at this point could be categorized as "garbage out, garbage in". Not recommended procedure... > Out[135]= > (1/Sqrt[2])*((4*Cos[x]*Sin[x]^2)/(E^(p*x)*(a^2 + b^2 + (-a^2 + > b^2)*Cos[2*x])^(3/2)) + > (1/a^2 + 3/b^2)*p*Integrate`TableMatchTrig1[((-(1/2))*I*Csc[2*x])/ > E^((-I + p)*x), x, 0] + > (4*Integrate`TableMatchTrig1[((1/2)*Csc[2*x])/E^((-I + p)*x), x, > 0])/a^2 + > (1/(a^2*b^2))*((3*a^2 + > b^2)*p*Integrate`TableMatchTrig1[((1/2)*I*Csc[2*x])/E^((I + p)*x), x, > 0] + > 4*b^2*Integrate`TableMatchTrig1[((1/2)*Csc[2*x])/E^((I + p)*x), > x, 0] - > (a - b)*(a + b)*p*(Integrate`TableMatchTrig1[((- > (1/2))*I*Csc[2*x])/E^((-3*I + p)*x), x, 0] + > Integrate`TableMatchTrig1[((1/2)*I*Csc[2*x])/E^((3*I + p)*x), > x, 0]))) > > And this is the desired result! A RESULT? This mesh? Well, garbage back out. No surprise at this step. > Now if I could see your face I am sure that you would look quite > curious > about how someone could use this result! > > You asked for a closed form solution in Mathematica! > That is, what Mathematica (in collaboration with mind...) returns! I'd say this one was not a better day for either partner. > I sent my reply to Daniel Lichtblau of WRI for more details. > > Best Regards > Dimitris > > > / Joel Storch : > >>I would like a closed-form expression for >> >>Integrate[Exp[-p x] Sin[x]/(a^2 Sin[x]^2+b^2 Cos[x]^2)^(3/2),x] >> >>where a,b & p are positive constants Not much more to say so I'll paraphrase (read: shamelessly plagiarize) Gertrude Stein: A bug is a bug is a bug. Daniel Lichtblau Wolfram Research
- References:
- Re: Indefinite Integral
- From: dimitris <dimmechan@yahoo.com>
- Re: Indefinite Integral