Re: Eigenvalues
- To: mathgroup at smc.vnet.net
- Subject: [mg77771] Re: [mg77699] Eigenvalues
- From: Sseziwa Mukasa <mukasa at jeol.com>
- Date: Sat, 16 Jun 2007 03:33:04 -0400 (EDT)
- References: <200706150832.EAA15805@smc.vnet.net>
On Jun 15, 2007, at 4:32 AM, amitsoni.1984 at gmail.com wrote: > Hi, > > I am using Eigenvalues[S] to find the eigenvalues of a matrix. When S > is a non singular matrix(size 500X500), the result comes very fast and > I get numerical values of the eigenvalues. When S is singular, or very > close to singular, the same command takes a very long time and I get > the solution in the following form: > ------------------------------------------ > (Root[1 - > 6859435996762057045187843293221812393683817376046833008234880515639280 > 04 > 00 #1 + > 422683709458129987020719509512322527334828765466847787730553472756576 > 3506258708383447822509137758993927488132783442108014806593541358448555 > 767500 > #1^2 - > 4756334945955210795836139142803033950863408883091629073980127621488009 > 9538622776902139577425659266255925123024793120672024133734311577213768 > 95723657 > 92383917222956224461254901373715676847804396794660504978304000000 > #1^3 + > 1490439316139768721738053003572341238241771871563766864860921729266477 > 34083521 > 3178933085853599699167808789742199539196497269955741918549529138824590 > 23542023 > 1375808689867514677371127 .......... > ------------------------------------------------------------- > > How can I get the solution(eigenvalues) as numerical values? Are all your matrix entries integers? If so, and if you can work with machine precision use N to turn your matrix entries into machine precision numbers, this may make the algorithm run faster at the expense of precision, or just apply N to the Root objects if you need the precision. Regards, Ssezi
- References:
- Eigenvalues
- From: "amitsoni.1984@gmail.com" <amitsoni.1984@gmail.com>
- Eigenvalues