Re: question
- To: mathgroup at smc.vnet.net
- Subject: [mg77847] Re: [mg77827] question
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Mon, 18 Jun 2007 06:58:23 -0400 (EDT)
- Reply-to: hanlonr at cox.net
o = 2*Cos[Pi/48]*(1 - Cos[Pi/48]^2)^(1/2) + 2*Cos[Pi/48]^2 - 1; ClearSystemCache[] Timing[ToRadicals[ RootReduce[(FullSimplify[#1, ComplexityFunction -> (Count[{#1}, _Cos, Infinity] &)] &)[ o]]]] {20.088752000000014, Sqrt[(1/2)*(2 + Sqrt[ 2 - Sqrt[3]])]} ClearSystemCache[] Timing[ToRadicals[ RootReduce[Simplify[o /. 1 - Cos[x_]^2 -> Sin[x]^2]]]] {0.0916960000000131, Sqrt[(1/2)*(2 + Sqrt[ 2 - Sqrt[3]])]} ClearSystemCache[] Timing[o // TrigFactor // FullSimplify] {2.2494800000000055, Cos[Pi/24] + Sin[Pi/24]} ClearSystemCache[] Timing[o // TrigToExp // FullSimplify] {2.2507500000000107, Cos[Pi/24] + Sin[Pi/24]} ClearSystemCache[] Timing[o // TrigToExp // Simplify // RootReduce // ToRadicals] {8.879419999999996, Sqrt[(1/2)*(2 + Sqrt[ 2 - Sqrt[3]])]} ClearSystemCache[] Timing[o // TrigFactor // Simplify // RootReduce // ToRadicals] {8.879437999999993, Sqrt[(1/2)*(2 + Sqrt[ 2 - Sqrt[3]])]} Bob Hanlon ---- dimitris <dimmechan at yahoo.com> wrote: > Two eforts in Mathematica 5.2 in order > to simplify o below > > o = 2*Cos[Pi/48]*(1 - Cos[Pi/48]^2)^(1/2) + 2*Cos[Pi/48]^2 - 1; > > First leaving Mathematica do the job. > > Timing[ToRadicals[RootReduce[(FullSimplify[#1, ComplexityFunction -> > (Count[{#1}, _Cos, Infinity] & )] & )[o]]]] > {43.031*Second, Sqrt[(1/2)*(2 + Sqrt[2 - Sqrt[3]])]} > > Then help a bit Mathematica. > I couldn't find a built in command to simplify 1 - Cos[Pi/48]^2 to > Sin[Pi/48]^2. That's why the adding of a rule. > > Timing[ToRadicals[RootReduce[Simplify[o /. 1 - Cos[Pi/48]^2 -> > Sin[Pi/ > 48]^2]]]] > {0.25*Second, Sqrt[(1/2)*(2 + Sqrt[2 - Sqrt[3]])]} > > Any other suggestions will be highly appreciated. > > Dimitris > >