Re: Mind+Mathematica
- To: mathgroup at smc.vnet.net
- Subject: [mg78085] Re: [mg78010] Mind+Mathematica
- From: DrMajorBob <drmajorbob at bigfoot.com>
- Date: Fri, 22 Jun 2007 06:48:03 -0400 (EDT)
- References: <28708894.1182424059011.JavaMail.root@m35>
- Reply-to: drmajorbob at bigfoot.com
Or (in v6): step1 = Sin[z]*Sin[z^3 + z] // TrigExpand // Expand Cos[z^3]/2 - 1/2 Cos[z]^2 Cos[z^3] + 1/2 Cos[z^3] Sin[z]^2 + Cos[z] Sin[z] Sin[z^3] step2 = Integrate[#, {z, 0, Infinity}] & /@ step1 (\[Pi] (AiryAi[-2/3^(1/3)] - AiryAi[2/3^(1/3)]))/(4 3^(1/3)) + Gamma[1/3]/( 4 Sqrt[3]) + (-3^( 1/6) \[Pi] (AiryAi[-2/3^(1/3)] + AiryAi[2/3^(1/3)]) + Gamma[1/3])/( 8 Sqrt[3]) + (\[Pi] (-6 + 3^(2/3) (AiryAi[-2/3^(1/3)] + AiryAi[2/3^(1/3)]) Gamma[-1/3]))/( 72 Gamma[2/3]) step3 = step2 // FullSimplify 1/6 \[Pi] (-3^(2/3) AiryAi[2/3^(1/3)] - 3/Gamma[-1/3]) step3 // N 0.295741 Bobby On Thu, 21 Jun 2007 04:45:59 -0500, dimitris <dimmechan at yahoo.com> wrote: > The integral > > Integrate[Sin[z]*Sin[z^3 + z], {z, 0, Infinity}] > > (as I was informed) > > gives a incorrectly divergent message. > The integral however is convergent. > > The following is part of my response to another forum. > Demonstrate how vital is to help Mathematica sometimes. > > In[2]:= > $Version > > Out[2]= > "5.2 for Microsoft Windows (June 20, 2005)" > > In[3]:= > int=Integrate[Sin[z]*Sin[z^3 + z], {z, 0, Infinity}](*the integral > stays unevaluated*) > > Out[3]= > Integrate[Sin[z]*Sin[z + z^3], {z, 0, Infinity}] > > In[3]:= > int2 = (int /. Integrate[f_, x_] :> Integrate[#1, {z, 0, Infinity}] > & ) /@ Expand[Sin[z]*TrigExpand[Sin[z^3 + z]]] > > Out[3]= > (1/72)*(2*Sqrt[6]*Pi*(BesselI[1/3, (4*Sqrt[2/3])/3] - BesselJ[1/3, > (4*Sqrt[2/3])/3]) + > 3*Gamma[1/3]*(2*Sqrt[3] - Sqrt[2]*BesselI[-(1/3), (4*Sqrt[2/3])/ > 3]*Gamma[2/3] - Sqrt[2]*BesselJ[-(1/3), (4*Sqrt[2/3])/3]*Gamma[2/3])) > + Integrate[Cos[z]*Sin[z]*Sin[z^3], {z, 0, Infinity}] > > In[4]:= > int3 = (1/2)*Integrate[Sin[2*z]*Sin[z^3], {z, 0, Infinity}] > > Out[4]= > (Pi*(AiryAi[-(2/3^(1/3))] - AiryAi[2/3^(1/3)]))/(4*3^(1/3)) > > In[5]:= > FullSimplify[int2 /. Integrate[x___] :> int3] > > Out[5]= > (-2*3^(1/6)*Pi*AiryAi[2/3^(1/3)] + Gamma[1/3])/(4*Sqrt[3]) > > In[6]:= > N[%, 40] > > Out[6]= > 0.295741225849781931593673891336119670357883693300484102195`40. > > Brought to you by M^2 > (Man+Mathematica!) > > Dimitris > > PS > I spent almost two hours to figure out a workaround. > How ancient Greeks said: > "It is not easy to get Goods" > > PS2 > Enjoy Mathematics and Mathematica! > > > -- = DrMajorBob at bigfoot.com