Re: Solving a Integral (2)
- To: mathgroup at smc.vnet.net
- Subject: [mg78124] Re: Solving a Integral (2)
- From: dimitris <dimmechan at yahoo.com>
- Date: Sat, 23 Jun 2007 07:13:50 -0400 (EDT)
- References: <f5g9bn$g6b$1@smc.vnet.net>
Hi again. I try various things in order to help Integrate. With no success unfortunately. Say In[2]:= f[x_, a_, b_, c_, d_] = x^(c - 1)*(Exp[-(x/d)]/(1 + Exp[(-a)*x - b])) Out[2]= x^(-1 + c)/(E^(x/d)*(1 + E^(-b - a*x))) (*your integrand*) The requested definite integral stays unevaluated. In[9]:= Integrate[f[x, a, b, c, d], {x, 0, Infinity}] Out[9]= Integrate[x^(-1 + c)/(E^(x/d)*(1 + E^(-b - a*x))), {x, 0, Infinity}] This is not surprising. The integrand contains four parameters and it is not an easy task to deal with all of them. If specific values are given; say In[11]:= ex = Thread[{a, b, c, d} -> {3, 2, 1, 4}] Out[11]= {a -> 3, b -> 2, c -> 1, d -> 4} then the task is much more easier! In[33]:= FullSimplify[Integrate[f[x, a, b, c, d] /. ex, {x, 0, Infinity}]] Out[33]= (1/3)*(-1)^(1/12)*E^(1/6)*Log[((1 + 2/(-1 + (-1)^(1/4)*E^(1/6)))^(-1)^(1/6)*(1 + 2/(-1 + (-1)^(5/12)*E^(1/6)))^(-1)^(1/3)* (1 + 2/(-1 + (-1)^(7/12)*E^(1/6)))^I*(1 + 2/(-1 + (-1)^(3/4)*E^(1/6)))^(-1)^(2/3)* (1 + 2/(-1 + (-1)^(11/12)*E^(1/6)))^(-1)^(5/6)*(-(-1)^(11/12) + E^(1/6)))/((-1)^(11/12) + E^(1/6))] In[34]:= {N[%], NIntegrate[f[x, a, b, c, d] /. ex, {x, 0, Infinity}]} Out[34]= {3.961045612743195 - 5.551115123125783*^-16*I, 3.9610456087403803} Let's try to leave to leave one parameter unspecified; say d. In[42]:= Integrate[f[x, 2, 1/2, 3, d], {x, 0, Infinity}] Out[42]= If[Re[d] > 0, 2*d^3*(1 - HypergeometricPFQ[{1, 1 + 1/(2*d), 1 + 1/ (2*d), 1 + 1/(2*d)}, {2 + 1/(2*d), 2 + 1/(2*d), 2 + 1/(2*d)}, -(1/Sqrt[E])]/((1 + 2*d)^3*Sqrt[E])), Integrate[x^2/(E^(x/d)*(1 + E^(-(1/2) - 2*x))), {x, 0, Infinity}, Assumptions -> Re[d] <= 0]] Say now we leave two parameters unspecified. In[47]:= Integrate[f[x, a, 5/3, 1, d], {x, 0, Infinity}] Out[47]= If[Re[a] < 0 && Re[a] < Re[1/d], ((-1)^(1/(a*d))*E^(5/(3*a*d))*Beta[- E^(5/3), 1 - 1/(a*d), 0])/a, Integrate[1/(E^(x/d)*(1 + E^(-(5/3) - a*x))), {x, 0, Infinity}, Assumptions -> Re[a] >= Re[1/d] || Re[a] >= 0]] Dimitris PS See this message as a hint; not as the final word! ehrnsperge... at pg.com : > Jean-Marc, > > thanks for your help. I made the changes as you suggested and I still can > not convince Mathematica to solve the integral. Any additional > suggestions? > > Thanks, > > Bruno > > Dr. Bruno Ehrnsperger > Principal Scientist > > Procter & Gamble Service GmbH > Sulzbacherstr.40 > 65824 Schwalbach > Germany > > fon +49-6196-89-4412 > fax +49-6196-89-22965 > e-mail: ehrnsperger.b at pg.com > internet: www.pg.com > > Gesch=E4ftsf=FChrer: Otmar W. Debald, Gerhard Ritter, Dr. Klaus Schumann, > Willi Schwerdtle > Sitz: Sulzbacher Str. 40, 65824 Schwalbach am Taunus, Amtsgericht: > K=F6nigstein im Taunus HRB 4990 > > > > > > Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com> > 21/06/2007 15:30 > > > To: Bruno Ehrnsperger-B/PGI@PGI, mathgroup at smc.vnet.net > cc: > Subject: Re: Solving a Integral > > > ehrnsperger.b at pg.com wrote: > > I need help in solving the following integral: > > > > Integral = 1/(beta^alpha* Gamma[alpha]) * > > Integrate[x^(alpha-1)*Exp[-x/beta]/(1+Exp[-a*x-b]),{x,0, infinity}, > -----------------------------------------------------------^^^^^^^^ > oo Must be written Infinity (with a capital I) > > > Assumptions: (alpha> 0)||(beta > 0)||(a > 0)||(b <0)] > -------------^^ > The : character means nothing here: use -> > > Moreover, are you sure that you want a OR ( that is ||) condition on > your assumptions rather than an AND (that is &&)? > > HTH, > Jean-Marc > > > The Integral is approximately 1/(beta^alpha* Gamma[alpha]) > > *1/(1+Exp[-a*alpha*beta-b]) + Order[alpha*beta^2] > > > > However, I would like to have an exact analytical solution, and I am > > failing to convince Mathematica to give me the solution. Is there a way > to > > ask Mathematica to give the solution as a series expansion of my > > approximate solution? > > > > Thanks so much for your help, > > > > Bruno > > > > Dr. Bruno Ehrnsperger > > Principal Scientist > > > > Procter & Gamble Service GmbH > > Sulzbacherstr.40 > > 65824 Schwalbach > > Germany > > > > fon +49-6196-89-4412 > > fax +49-6196-89-22965 > > e-mail: ehrnsperger.b at pg.com > > internet: www.pg.com > > > > Gesch=E4ftsf=FChrer: Otmar W. Debald, Gerhard Ritter, Dr. Klaus > Schumann, > > Willi Schwerdtle > > Sitz: Sulzbacher Str. 40, 65824 Schwalbach am Taunus, Amtsgericht: > > K=F6nigstein im Taunus HRB 4990 > > > >