Re: NonlinearRegress and errors on parameter fit
- To: mathgroup at smc.vnet.net
- Subject: [mg78333] Re: [mg78293] NonlinearRegress and errors on parameter fit
- From: Darren Glosemeyer <darreng at wolfram.com>
- Date: Thu, 28 Jun 2007 04:33:28 -0400 (EDT)
- References: <200706270941.FAA01898@smc.vnet.net>
alan.zablocki at gmail.com wrote: > Dear All > > Could someone confirm whether EstimatedVariance is an error on the > value fitted to a parameter using NonlinearRegress? Example: > > In[20]:= << NonLinearRegression` > > In[26]:= data = {{0, -1}, {2, 0}, {4, 1}} > > Out[26]= {{0, -1}, {2, 0}, {4, 1}} > > In[27]:= NonlinearRegress[data, a x + b, {a, b}, x] > > Out[27]= {BestFitParameters -> {a -> 0.5, b -> -1.}, > > > EstimatedVariance -> 1.35585*10^-31 > > I have shown all the working and results. Lastly why only one error on > both a and b? > > If this is not the error on a and b, how can I obtain it? > > Alan > > The parameter errors are the Asymptotic SE values given in the ParameterCITable and ParameterTable RegressionReport values. The square root of EstimatedVariance is a component of these standard errors. Here is one way to obtain the values. In[1]:= << NonlinearRegression` In[2]:= data = {{0, -1}, {2, 0}, {4, 1}}; In[3]:= tab = NonlinearRegress[data, a x + b, {a, b}, x, RegressionReport -> ParameterCITable] Out[3]= {ParameterCITable -> Estimate Asymptotic SE CI } -16 a 0.5 1.30185 10 {0.5, 0.5} -16 b -1. 3.36137 10 {-1., -1.} In[4]:= (ParameterCITable /. tab)[[1, All, 2]] -16 -16 Out[4]= {1.30185 10 , 3.36137 10 } Of course, in this particular example the data would fit the function exactly and the non-zero errors are just due to numerical error. Darren Glosemeyer Wolfram Research
- References:
- NonlinearRegress and errors on parameter fit
- From: alan.zablocki@gmail.com
- NonlinearRegress and errors on parameter fit