Re: Solving a Integral
- To: mathgroup at smc.vnet.net
- Subject: [mg78389] Re: Solving a Integral
- From: dimitris <dimmechan at yahoo.com>
- Date: Sat, 30 Jun 2007 06:03:37 -0400 (EDT)
- References: <f5dkds$no$1@smc.vnet.net><f5qi0d$49f$1@smc.vnet.net>
m... at inbox.ru : > On Jun 21, 5:37 am, ehrnsperge... at pg.com wrote: > > I need help in solving the following integral: > > > > Integral = 1/(beta^alpha* Gamma[alpha]) * > > Integrate[x^(alpha-1)*Exp[-x/beta]/(1+Exp[-a*x-b]),{x,0, infinity}, > > Assumptions: (alpha> 0)||(beta > 0)||(a > 0)||(b <0)] > > > > The Integral is approximately 1/(beta^alpha* Gamma[alpha]) > > *1/(1+Exp[-a*alpha*beta-b]) + Order[alpha*beta^2] > > > > However, I would like to have an exact analytical solution, and I am > > failing to convince Mathematica to give me the solution. Is there a way to > > ask Mathematica to give the solution as a series expansion of my > > approximate solution? > > > > Thanks so much for your help, > > > > Bruno > > > > Dr. Bruno Ehrnsperger > > Principal Scientist > > > > Procter & Gamble Service GmbH > > Sulzbacherstr.40 > > 65824 Schwalbach > > Germany > > > > fon +49-6196-89-4412 > > fax +49-6196-89-22965 > > e-mail: ehrnsperge... at pg.com > > internet:www.pg.com > > > > Gesch=E4ftsf=FChrer: Otmar W. Debald, Gerhard Ritter, Dr. Klaus Schumann, > > Willi Schwerdtle > > Sitz: Sulzbacher Str. 40, 65824 Schwalbach am Taunus, Amtsgericht: > > K=F6nigstein im Taunus HRB 4990 > > Expand the integrand into a series of exponents: > > In[1]:= 1/(beta^alpha Gamma[alpha]) x^(alpha - 1) E^(-x/beta)/ > (1 + E^(-a x - b)) == > 1/(beta^alpha Gamma[alpha]) Sum[ > (-1)^k x^(alpha - 1) E^((-a k - 1/beta) x - b k), > {k, 0, Infinity}] // Simplify > > Out[1]= True > > In[2]:= Assuming[{alpha > 0, beta > 0, a > 0, k >= 0}, > Integrate[(-1)^k x^(alpha - 1) E^((-a k - 1/beta) x - b k), > {x, 0, Infinity}]] > > Out[2]= (-1)^k E^(-b k) (beta/(1 + a beta k))^alpha Gamma[alpha] > > In[3]:= 1/(beta^alpha Gamma[alpha]) Sum[ > % /. (x_/y_)^p_ :> (1/Expand[y/x])^p, {k, 0, Infinity}] > > Out[3]= a^-alpha beta^-alpha LerchPhi[-E^-b, alpha, 1/(a beta)] > > Maxim Rytin > m.r at inbox.ru Amazing solution! Mind (more...) + Mathematica (less...) triumph! Dimitris