Re: Hilbert Transform problems
- To: mathgroup at smc.vnet.net
- Subject: [mg73988] Re: Hilbert Transform problems
- From: Peter Pein <petsie at dordos.net>
- Date: Sun, 4 Mar 2007 02:04:39 -0500 (EST)
- References: <es90iu$2id$1@smc.vnet.net>
rob schrieb: ... > 5.1 for Microsoft Windows (January 27, 2005) > > HilbertTransform[f_, x_, y_, (assum___)?OptionQ] := > Integrate[f/(x - y), {x, -Infinity, Infinity}, Method -> > Oscillatory, PrincipalValue -> True, assum]/Pi > > w = 5.; a = 1.; > s[t_] := Sin[w*t]*Exp[-(t/a)^2]; > Plot[s[t], {t, -10, 10},PlotRange->All] > > f[y_] = HilbertTransform[s[t], t, y] > > Plot[f[x], {x, -3, 3}] > > (for email, remove the IV) > Hi Rob, 1.) Method->Oscillatory is an option for NIntegrate only (and ProncipalValue is for Integrate only). I wonder why you didn't get error messages. There is a numeric function CauchyPrincipalValue available: <<NumericalMath`CauchyPrincipalValue` HilbertTransform[f_,x_,y_,r_,(assum___)?OptionQ]:= CauchyPrincipalValue[f/(x-y),{x,-Infinity,{y,r},Infinity},assum]/Pi; w=5;a=1; s[t_]:=Sin[w*t]*Exp[-(t/a)^2]; Plot[s[t],{t,-3,3},PlotRange\[Rule]All]; f[y_?NumericQ,r_?NumericQ]:=HilbertTransform[s[t],t,y,r]; Plot[f[y,1/10],{y,-3,3},PlotRange\[Rule]All]; Peter