computing total[ragged array] fast
- To: mathgroup at smc.vnet.net
- Subject: [mg74337] computing total[ragged array] fast
- From: "er" <erwann.rogard at gmail.com>
- Date: Mon, 19 Mar 2007 02:01:04 -0500 (EST)
hi, here's a 3x3 example of a ragged array ra={{a[1]},{a[2],b[2],c[2]},{a[3],b[3]}} and i'd like to define total s/t total[ra] returns {a[1]+a[2]+a[3],b[2]+b[3],c[2]} where each element is a numeric value (or at least the elements within a particular column are summable) below are 3 tentative functions and their timing performance vs size. Total (applied to a regular array) serves as benchmark: 1 outperforms 2&3 for large max-row-length but for small ones 3 is best, yet the speed gap relative to Total is big. any suggestion to narrow the gap for small (1-10) max-row-length? thanks, e. (*---code---*) Needs["Graphics`MultipleListPlot`"] Needs["Graphics`Legend`"] sumUnEqualLength=Module[{len1,len2,min,max}, len1=Length[#1];len2=Length[#2]; min=Min[len1,len2]; max=Max[len1,len2]; Join[Take[#1,min]+Take[#2,min], Take[ If[len1<len2,#2,#1],{min+1,max}]] ]&; ClearAll[sumRaggedArray] sumRaggedArray[1]=Fold[sumUnEqualLength,{0},#]&; sumRaggedArray[2]=Module[{lens=Length/@#1,sum}, sum=Array[0&,Max[lens]]; Scan[sum[[Range[#[[2]]]]]+=#[[1]]&,Thread[{#1,lens}]]; sum ]&; sumRaggedArray[3]= Module[{max=Max[Length/@#1]},Total[(PadRight[#1,max]&)/@#1]]&; (* (*too slow*) sumRaggedArray[4][ar_]:=Module[{lens=Length/@ar}, Total/@ Flatten[Reap[Scan[Module[{i=0},Scan[Sow[#,++i]&,#]]&,ar,2], Range[Max[lens]]][[2]],1] ]; *) doPlot[n1_,n2_,n3List_,eqLen:True|False]:=Module[{ar,rar}, ar=With[{n3=#},Array[Array[Random[]&,{n3}]&,{n1,n2}]]&/@n3List; If[ eqLen, rar=ar, rar= With[{n3=#}, Array[Array[Random[]&,{Random[Integer,{1,n3}]}]&, {n1,n2}]]&/@ n3List; ]; timings= Join[Table[ Thread[{n3List, Timing[sumRaggedArray[i]/@#;][[1]]/(n1 Second)&/@rar}], {i,1, 3}],{Thread[{n3List, Timing[Total/@#;][[1]]/(n1 Second)&/@ar}]}]; MultipleListPlot[##,PlotLabel\[Rule]"n2="<>ToString[n2], PlotJoined\[Rule]True,PlotLegend\[Rule]{1,2,3,"Total"}, ImageSize\[Rule]72*10]&@@timings ]; (*---experiments---*) (*timing vs max row-length of ragged array*) doPlot[50,5,Table[2^12-2^i,{i,0,11}],False]; doPlot[500,5,Table[i,{i,1,10}],False]; (*timing vs row-length of regular array*) doPlot[50,5,Table[2^12-2^i,{i,0,11}],True]; doPlot[500,5,Table[i,{i,1,10}],True];