a suprising result from Integrate (Null appeared in the result!)
- To: mathgroup at smc.vnet.net
- Subject: [mg74466] a suprising result from Integrate (Null appeared in the result!)
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Thu, 22 Mar 2007 01:13:45 -0500 (EST)
Hello to all. I discover (I think) a serious bug in Integrate. The results are (at least!) surprisingly so I checked many times before I post anything! Quit $Version 5.2 for Microsoft Windows (June 20, 2005) Consider the integral f = HoldForm[Integrate[(1 - Sin[x])^(y/4), {x, 0, 4}]] Then ReleaseHold[f /. y -> 1] 4 + Null*(-4 - (4*Sqrt[1 - Sin[4]])/(Cos[2] - Sin[2])) - 4*(1 - Sin[4])^(1/4) I believe you noticed immediately the appearance of Null! Information[Null] "Null is a symbol used to indicate the absence of an expression or a result. When it appears as an output expression, no output is printed." Attributes[Null] = {Protected} Note also DeleteCases[4 + Null*(-4 - (4*Sqrt[1 - Sin[4]])/(Cos[2] - Sin[2])) - 4*(1 - Sin[4])^(1/4), Null, Infinity] N[%] ReleaseHold[f /. y -> 1 /. Integrate[x___] :> NIntegrate[x, MaxRecursion -> 12]] -4*(1 - Sin[4])^(1/4) - (4*Sqrt[1 - Sin[4]])/(Cos[2] - Sin[2]) -0.6051176113064889 3.0908946898699625 Note also that Null appears also for other values of y (ReleaseHold[f /. y -> #1] & ) /@ Range[2, 5] {-2 + 4*Sqrt[2] + (2*(Cos[2] + Sin[2])*Sqrt[1 - Sin[4]])/(Cos[2] - Sin[2]), (2/3)*(-2 + (2*2^(1/4)*Pi^(3/2))/Gamma[3/4]^2 - 2^(3/4)*Hypergeometric2F1[1/2, 3/4, 3/2, -1] + (Cos[4]*(2^(1/4)*Hypergeometric2F1[1/2, 3/4, 3/2, Cos[2 - Pi/4]^2] + 2*(1 - Sin[4])^(1/4)))/Sqrt[1 - Sin[4]]), 3 + Cos[4], (4*((Cos[2] - Sin[2])*(5 + (-6 + Cos[4])*(1 - Sin[4])^(1/4)) - 6*Null*(Cos[2] - Sin[2] + Sqrt[1 - Sin[4]])))/ (5*(Cos[2] - Sin[2]))} It appears for y=5 and when it appears the result is wrong DeleteCases[%, Null, Infinity] N[%] {-2 + 4*Sqrt[2] + (2*(Cos[2] + Sin[2])*Sqrt[1 - Sin[4]])/(Cos[2] - Sin[2]), (2/3)*(-2 + (2*2^(1/4)*Pi^(3/2))/Gamma[3/4]^2 - 2^(3/4)*Hypergeometric2F1[1/2, 3/4, 3/2, -1] + (Cos[4]*(2^(1/4)*Hypergeometric2F1[1/2, 3/4, 3/2, Cos[2 - Pi/4]^2] + 2*(1 - Sin[4])^(1/4)))/Sqrt[1 - Sin[4]]), 3 + Cos[4], (4*((Cos[2] - Sin[2])*(5 + (-6 + Cos[4])*(1 - Sin[4])^(1/4)) - 6*(Cos[2] - Sin[2] + Sqrt[1 - Sin[4]])))/(5*(Cos[2] - Sin[2]))} {2.670553068935302, 2.454058460511143, 2.346356379136388, -2.128162283559219} (ReleaseHold[f /. y -> #1 /. Integrate[x___] :> NIntegrate[x, MaxRecursion -> 12]] & ) /@ Range[2, 5] {2.6705535326036554, 2.4540619799501173, 2.3463563791363886, 2.3070526406806264} So Null took the place of something? BTW, Here are plots of the integrands (Plot[(1 - Sin[x])^(#1/4), {x, 0, 4}] & ) /@ Range[5] Even the following setting does not fix the situation Integrate[(1 - Sin[x])^(1/4), {x, 0, Pi/2, 4}] 4 + Null*(-4 - (4*Sqrt[1 - Sin[4]])/(Cos[2] - Sin[2])) - 4*(1 - Sin[4])^(1/4) The next is funnier! Integrate[(1 - Sin[x])^(1/4), {x, 0, 1, Pi/2, 2, 4}] Simplify[%] Null*(-4 + (4*Sqrt[1 - Sin[1]])/(Cos[1/2] - Sin[1/2])) + 4*(1 + Null - (1 - Sin[1])^(1/4) - (Null*Sqrt[1 - Sin[1]])/(Cos[1/2] - Sin[1/2])) + 4*(1 - Sin[1])^(1/4) + Null*(-4 - (4*Sqrt[1 - Sin[2]])/(Cos[1] - Sin[1])) - 4*(1 - Sin[2])^(1/4) + 4*((1 - Sin[2])^(1/4) + (Null*Sqrt[1 - Sin[2]])/(Cos[1] - Sin[1]) - (1 - Sin[4])^(1/4) - (Null*Sqrt[1 - Sin[4]])/(Cos[2] - Sin[2])) -((4*((Cos[2] - Sin[2])*(-1 + (1 - Sin[4])^(1/4)) + Null*(Cos[2] - Sin[2] + Sqrt[1 - Sin[4]])))/(Cos[2] - Sin[2])) What about indefinite integrals? Integrate[(1 - Sin[x])^(1/4), x] -4*(1 - Sin[x])^(1/4) - (4*Null*Sqrt[1 - Sin[x]])/(Cos[x/2] - Sin[x/ 2]) Integrate[(1 - Sin[x])^(1/5), x] -5*(1 - Sin[x])^(1/5) - (4*Null*Sqrt[1 - Sin[x]])/(Cos[x/2] - Sin[x/ 2]) Trying also the setting (Integrate[(1 - Sin[x])^(1/4), {x, #1[[1]], #1[[2]]}] & ) /@ Partition[{0, Pi/2, 4}, 2, 1] {4, Null*(-4 - (4*Sqrt[1 - Sin[4]])/(Cos[2] - Sin[2])) - 4*(1 - Sin[4])^(1/4)} Of course you can get for Mathematica the correct answer by working as follows Integrate[(1 - Sin[x])^a, {x, 0, 4}, Assumptions -> a > 0] % /. a -> 1/4 N[%] 2^a*(-2*Hypergeometric2F1[1/2, 1 + a, 3/2, -1] + (2*Pi^(3/2)*Sec[a*Pi])/(Gamma[1/2 - a]*Gamma[1 + a]) + Cos[4]*Hypergeometric2F1[1/2, 1/2 - a, 3/2, Cos[2 - Pi/4]^2]*Sqrt[2/ (1 - Sin[4])]) 2^(1/4)*((2*Sqrt[2]*Pi^(3/2))/(Gamma[1/4]*Gamma[5/4]) - 2*Hypergeometric2F1[1/2, 5/4, 3/2, -1] + Cos[4]*Hypergeometric2F1[1/2, 1/4, 3/2, Cos[2 - Pi/4]^2]*Sqrt[2/(1 - Sin[4])]) 3.0908948436614616 But I believe the appearance of Null is a matter of headache for the developers! Dimitris