Re: simplifications
- To: mathgroup at smc.vnet.net
- Subject: [mg74540] Re: simplifications
- From: Peter Pein <petsie at dordos.net>
- Date: Sun, 25 Mar 2007 01:25:11 -0500 (EST)
- References: <eu1rpt$lf6$1@smc.vnet.net>
dimitris schrieb: > Hello. > > Below I use Mathematica to get some definite integrals along with > simplifications > of the results. > > ln[9]:= > f1 = FullSimplify[Integrate[x*(Sin[x]/(1 + Cos[x]^2)), {x, 0, Pi}]] > Out[9]= > (1/8)*Pi*(2*Pi + 8*I*ArcSinh[1] + Log[((2 - Sqrt[2])^(9*I)*(2 + > Sqrt[2])^(7*I))/(10 - 7*Sqrt[2])^(3*I)] + > Log[(6 + 4*Sqrt[2])^(-6*I)] - I*Log[10 + 7*Sqrt[2]]) ... > > In[14]:= > f6 = FullSimplify[Integrate[x*(Sin[x]/(1 + Cos[x]^2)), {x, -Pi, Pi}]] > Out[14]= > (1/4)*Pi*(2*Pi + 8*I*ArcSinh[1] + Log[((2 - Sqrt[2])^(9*I)*(2 + > Sqrt[2])^(7*I))/(10 - 7*Sqrt[2])^(3*I)] + > Log[(6 + 4*Sqrt[2])^(-6*I)] - I*Log[10 + 7*Sqrt[2]]) > > No matter what I try I couldn't simplify f1 and f6 directly to Pi^2/4 > and Pi^2/2. > ... > > Can somebody guess why we f1 and f6 do not simplify directly as the > other fi? > > Hi Dimitris, maybe the minimuf of the denominator causes this trouble. My first attempt was In[1]:= Apply[ Timing[ ClearCache[]; MemoryConstrained[ FullSimplify[Integrate[x*(Sin[x]/(1 + Cos[x]^2)), {x, ##1}]], 512*1024^2 (* give Mathematica 512MB to waste *)]] & , {{0, Pi/2, Pi}, {-Pi, -Pi/2, Pi/2, Pi}}, {1}] Out[1]= {{ 46.531*Second, Pi^2/4}, {301.516*Second, $Aborted}} so this is not an option. The use of ComplexExpand gives (better) results: In[2]:= Timing[ ClearCache[]; FullSimplify[ComplexExpand[ Integrate[x*(Sin[x]/(1 + Cos[x]^2)), {x, #1, Pi}]]]]& /@ {0, -Pi} Out[2]= {{43.797*Second, Pi^2/4}, {39.562*Second, Pi^2/2}} But the best way to do this seems to be a substitution: In[3]:= Timing[ ClearCache[]; Integrate[ TrigExpand[x*(Sin[x]/(1 + Cos[x]^2))*Dt[x] /. x -> 2*ArcTan[t] /. Dt[t] -> 1], {t, Limit[Tan[x/2], x -> #1], Infinity}]]& /@ {0, -Pi} Out[3]= {{9.297*Second, Pi^2/4}, {9.219*Second, Pi^2/2}} Peter