elliptic integral
- To: mathgroup at smc.vnet.net
- Subject: [mg75733] elliptic integral
- From: dimitris <dimmechan at yahoo.com>
- Date: Wed, 9 May 2007 04:38:02 -0400 (EDT)
Consider the function In[17]:= f[x_] := Sqrt[(1 - x)/((x - 2)*(x^2 - 2*x + 3))] In[20]:= Plot[f[x], {x, 1, 2}] The following definite integral can be evaluated in version 4.0. However, version 5.2 fails to obtain a closed form solution. I really appreciate if someone will try it to version 6. (*version 5.2*) In[28]:= Integrate[f[x], {x, 1, 2}] Out[28]= Integrate[Sqrt[(1 - x)/((-2 + x)*(3 - 2*x + x^2))], {x, 1, 2}] The indefinite integral can be done. But the returned result is much more complicated than the respective antiderivative by version 4.0. (*version 5.2*) In[31]:= F[x_] = Integrate[Sqrt[(1 - x)/((x - 2)*(x^2 - 2*x + 3))], x] Out[31]= (2^(3/4)*(-2 + x)*Sqrt[(I + Sqrt[2] - I*x)/((-I + Sqrt[2])*(-1 + x))]*Sqrt[(-I + Sqrt[2] + I*x)/((I + Sqrt[2])*(-1 + x))]* Sqrt[(1 - x)/(-6 + 7*x - 4*x^2 + x^3)]*EllipticPi[1 - I/Sqrt[2], ArcSin[2^(1/4)*Sqrt[(-2 + x)/((-I + Sqrt[2])*(-1 + x))]], (-I + Sqrt[2])/(I + Sqrt[2])])/Sqrt[(-2 + x)/((-I + Sqrt[2])*(-1 + x))] In[37]:= Simplify[D[F[x], x] == f[x]] Out[37]= True Even application of the Newton-Leibniz formula fails. In[40]:= Plot[F[x], {x, 1, 2}, Frame -> {True, True, False, False}] In[47]:= Limit[F[x], x -> 2,Direction->1] - Limit[F[x], x -> 1,Direction->-1] Out[47]= -Limit[(2^(3/4)*(-2 + x)*Sqrt[(I + Sqrt[2] - I*x)/((-I + Sqrt[2])*(-1 + x))]*Sqrt[(-I + Sqrt[2] + I*x)/((I + Sqrt[2])*(-1 + x))]*Sqrt[(1 - x)/(-6 + 7*x - 4*x^2 + x^3)]*EllipticPi[1 - I/Sqrt[2], ArcSin[2^(1/4)*Sqrt[(-2 + x)/((-I + Sqrt[2])*(-1 + x))]], (-I + Sqrt[2])/(I + Sqrt[2])])/Sqrt[(-2 + x)/((-I + Sqrt[2])*(-1 + x))], x -> 1,Direction->-1] (unfortunately I don't have installed version 4.0 in this computer). Dimitris