Re: elliptic integral (reloaded!) (version 4 resullt!)
- To: mathgroup at smc.vnet.net
- Subject: [mg75964] Re: elliptic integral (reloaded!) (version 4 resullt!)
- From: dimitris <dimmechan at yahoo.com>
- Date: Mon, 14 May 2007 03:37:20 -0400 (EDT)
- References: <f23ome$n1h$1@smc.vnet.net><f26oo3$531$1@smc.vnet.net>
For anyone interested in, here is the solution by mathematica 4 FullSimplify[Integrate[Sqrt[(1 - x)/((x - 2)*(x^2 - 2*x + 3))], {x, 1, 2}]] (1/9)*Sqrt[(2/3)*(-2 - 5*I*Sqrt[2])]*(Sqrt[3*(7 - 4*I*Sqrt[2])]*EllipticPi[1 + I/Sqrt[2], ArcSin[Sqrt[(1/3)*I*(2*I + Sqrt[2])]], (1/3)*(1 + 2*I*Sqrt[2])] + 3*I*(I + Sqrt[2])*(EllipticF[ArcSin[Sqrt[-1 - I/Sqrt[2]]], 1/3 - (2*I*Sqrt[2])/3] - EllipticPi[2/3 - (I*Sqrt[2])/3, ArcSin[Sqrt[-1 - I/Sqrt[2]]], 1/3 - (2*I*Sqrt[2])/3])) N[%, 30] 0=2E9752615369238655188048453717492992972879577`30. + 0``64.2344*I NIntegrate[Sqrt[(1 - x)/((x - 2)*(x^2 - 2*x + 3))], {x, 1, 2}, WorkingPrecision -> 60, PrecisionGoal -> 30, MaxRecursion -> 12] 0=2E975261536923865518804845371747769411552590737095`30.189694608876156 + 0``30.2005735123453*I I have tried the Newton-Leibniz formula but Mathematica 4 can't get the limit at the endpoints. So the question remains why Mathematica 6 and Mathematica 5.2 return the definite integral unevaluated whereas our old (but good!) friend Mathematica 4 returns a closed form result? Any ideas? Dimitris =CF/=C7 dimitris =DD=E3=F1=E1=F8=E5: > If I was not clear let be a little more specific! > > I mean > > o//ReleaseHold > > produce a result in version 4 which having been checked numerically > agrees with the relevant numerical estimation (by NIntegrate). > > On the other hand > > o//ReleaseHold > > returns the integral unevaluated in version 5.2. > > David Cantrell proposed the following workaround in version 5.2. > > In[2635]:= > Integrate[(x - 1)/Sqrt[(1 - x)*(x - 2)*(x^2 - 2*x + 3)], {x, 1, 3/2}] > + Integrate[Sqrt[(1 - x)/((x - 2)*(x^2 - 2*x + 3))], > {x, 3/2, 2}]//InputForm > > Out[2635]//InputForm= > (8*Sqrt[4 - I*Sqrt[2]]*EllipticF[ArcSin[Sqrt[5*I + Sqrt[2]]/2^(3/4)], > (2*Sqrt[2])/(2*I + Sqrt[2])] - > (7*I)*Sqrt[8 - (2*I)*Sqrt[2]]*EllipticF[ArcSin[Sqrt[5*I + Sqrt[2]]/ > 2^(3/4)], (2*Sqrt[2])/(2*I + Sqrt[2])] + > (12*I)*Sqrt[4 + I*Sqrt[2]]*EllipticF[I*(Log[2] - Log[Sqrt[2 - > (2*I)*Sqrt[2]] + I*2^(1/4)*Sqrt[2*I + Sqrt[2]]]), > (2*Sqrt[2])/(2*I + Sqrt[2])] - 3*Sqrt[8 + (2*I)*Sqrt[2]]* > EllipticF[I*(Log[2] - Log[Sqrt[2 - (2*I)*Sqrt[2]] + > I*2^(1/4)*Sqrt[2*I + Sqrt[2]]]), (2*Sqrt[2])/(2*I + Sqrt[2])] + > 9*Sqrt[2*(-8 + (7*I)*Sqrt[2])]*EllipticPi[(2*Sqrt[2])/(-I + > Sqrt[2]), ArcSin[Sqrt[5*I + Sqrt[2]]/2^(3/4)], > (2*Sqrt[2])/(2*I + Sqrt[2])] - 9*Sqrt[2*(-8 + > (7*I)*Sqrt[2])]*EllipticPi[(2*Sqrt[2])/(-I + Sqrt[2]), > I*(Log[2] - Log[Sqrt[2 - (2*I)*Sqrt[2]] + I*2^(1/4)*Sqrt[2*I + > Sqrt[2]]]), (2*Sqrt[2])/(2*I + Sqrt[2])])/ > (3*Sqrt[-1 + I/Sqrt[2]]*Sqrt[-8 + (7*I)*Sqrt[2]]*(-I + Sqrt[2])) + > EllipticPi[1 - I/Sqrt[2], ArcSin[Root[2 + 4*#1^2 + 3*#1^4 & , 3, 0]], > (1 - (2*I)*Sqrt[2])/3]*Root[8 + 8*#1^2 + 3*#1^4 & , 4, 0] > > In[2636]:= > Chop[N[%,30]] > > Out[2636]= > 0=2E975261536923865518804845371749 > > which it looks quite mysterious to me! (3/2???) > > Dimitris > > > =CF/=C7 dimitris =DD=E3=F1=E1=F8=E5: > > I guess saying many things prevent forumists from answering?! > > > > Anyway... > > > > In[9]:= > > o = HoldForm[Integrate[Sqrt[(1 - x)/((x - 2)*(x^2 - 2*x + 3))], {x, 1, > > 2}]] > > > > Version 4. succeeds in getting a closed form result. > > Version 5.2 returns the integral unevalueated. > > > > I just want to know what version 6 does! > > > > Thanks a lot! > > > > Dimitris