Re: Solve & RotationMatrix
- To: mathgroup at smc.vnet.net
- Subject: [mg76082] Re: Solve & RotationMatrix
- From: CKWong <CKWong.P at gmail.com>
- Date: Wed, 16 May 2007 05:22:14 -0400 (EDT)
- References: <f21g0q$7d6$1@smc.vnet.net><f23qq6$oa3$1@smc.vnet.net>
I've looked again at your algorithm & found that it was more incomplete than I thought. The following is a version that'll give you the answer =A3\ = 3=A3k/4, =A3] 0, A3^ = 0. The formatting may seem horrible. Just copy it to mathematica and run it. \!\(\* RowBox[{\(=A3\ =. ; =A3] =. ; =A3^ =. ;\), "\n", \(VectX = {1, 0, 0}; \), "\n", \(VectY = {0, 1, 0}; \), "\n", \(VectZ = {0, 0, 1}; \), "\n", "\ [IndentingNewLine]", RowBox[{ RowBox[{"RotX", "=", RowBox[{"(", GridBox[{ {"1", "0", "0"}, {"0", \(Cos[=A3\]\), \(-Sin[=A3\]\)}, {"0", \(Sin[=A3\]\), \(Cos[=A3\]\)} }], ")"}]}], ";"}], "\n", RowBox[{ RowBox[{"RotY", "=", RowBox[{"(", GridBox[{ {\(Cos[=A3]]\), "0", \(Sin[=A3]]\)}, {"0", "1", "0"}, {\(-Sin[=A3]]\), "0", \(Cos[=A3]]\)} }], ")"}]}], ";"}], "\n", RowBox[{ RowBox[{"RotZ", "=", RowBox[{"(", GridBox[{ {\(Cos[=A3^]\), \(-Sin[=A3^]\), "0"}, {\(Sin[=A3^]\), \(Cos[=A3^]\), "0"}, {"0", "0", "1"} }], ") "}]}], ";"}], "\n", \(Rotation = RotX . RotY . RotZ; \), "\n ", \(PtO = {0, 0, 0}; \), "\n ", \(PtA = {1, 0, 0}; \), "\n ", \(PtB = {0, 1, 1};\), "\n", \(VectN = \(( PtA - PtO)\)\[Cross]\((PtB - PtO)\);\), "\n ", \(VectN = VectN\/\@\(VectN . VectN\)\), "\n", \(eq = \(VectN == Rotation . VectY // Thread\) // Simplify \), "\n", \ \(eqS = eq /. {=A3] -> 0, =A3^ -> 0} // Simplify\), "\n", \(Solve[eqS, {=A3\}] \)}]\)