Mathematica 9 is now available
Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2007
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2007

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Minimize[] Problem

  • To: mathgroup at smc.vnet.net
  • Subject: [mg76358] Re: [mg76317] Minimize[] Problem
  • From: DrMajorBob <drmajorbob at bigfoot.com>
  • Date: Sun, 20 May 2007 02:33:05 -0400 (EDT)
  • References: <13498482.1179565652575.JavaMail.root@m35>
  • Reply-to: drmajorbob at bigfoot.com

Version 6 gets it right,

  u= x^4- 6 x^2+1;
  Minimize[u^2, {x}]
{(1 - 6*(-1 - Sqrt[2])^2 + (-1 - Sqrt[2])^4)^2, {x -> -1 - Sqrt[2]}}

Bobby

On Sat, 19 May 2007 03:48:45 -0500, <anguzman at ing.uchile.cl> wrote:

> Hello.
>
> Why do I get?
>
> In[4]:=
> Minimize[(x^4-6 x^2+1)^2,{x}]
> Out[4]=
> {1,{x->0}}
>
> when..
>
> In[3]:=
> (x^4-6 x^2+1)^2/.x->1-Sqrt[2]//Simplify
> Out[3]=
>
>
> x=0 is actually a local maximum.
> Any answer will be appreciated.
>
> Atte Andres Guzman
>
> ----------------------------------------------------------------
> This message was sent using IMP, the Internet Messaging Program.
>
>
>



-- =

DrMajorBob at bigfoot.com


  • Prev by Date: Re: Mathematica 6 & Wolfram Workbench
  • Next by Date: 6
  • Previous by thread: Minimize[] Problem
  • Next by thread: Re: Minimize[] Problem